// This file is part of BOINC.
// http://boinc.berkeley.edu
// Copyright (C) 2008 University of California
//
// BOINC is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License
// as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// BOINC is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with BOINC. If not, see .
// Stuff related to catching SEH exceptions, monitoring threads, and trapping
// debugger messages; used by both core client and by apps.
#if defined(_WIN32) && !defined(__STDWX_H__)
#include "boinc_win.h"
#elif defined(_WIN32) && defined(__STDWX_H__)
#include "stdwx.h"
#endif
#if defined(_MSC_VER) || defined(__MINGW32__)
#define snprintf _snprintf
#define strdate _strdate
#define strtime _strtime
#endif
#ifndef __CYGWIN32__
#include "stackwalker_win.h"
#endif
#include "diagnostics.h"
#include "error_numbers.h"
#include "str_util.h"
#include "util.h"
#include "version.h"
#include "diagnostics_win.h"
// NtQuerySystemInformation
typedef NTSTATUS (WINAPI *tNTQSI)(
ULONG SystemInformationClass,
PVOID SystemInformation,
ULONG SystemInformationLength,
PULONG ReturnLength
);
// IsDebuggerPresent
typedef BOOL (WINAPI *tIDP)();
// CreateToolhelp32Snapshot
typedef HANDLE (WINAPI *tCT32S)(DWORD dwFlags, DWORD dwProcessID);
// Thread32First
typedef BOOL (WINAPI *tT32F)(HANDLE hSnapshot, LPTHREADENTRY32 lpte);
// Thread32Next
typedef BOOL (WINAPI *tT32N)(HANDLE hSnapshot, LPTHREADENTRY32 lpte);
// OpenThread
typedef HANDLE (WINAPI *tOT)(DWORD dwDesiredAccess, BOOL bInheritHandle, DWORD dwThreadId);
// Look in the registry for the specified value user the BOINC diagnostics
// hive.
BOOL diagnostics_get_registry_value(LPCSTR lpName, LPDWORD lpdwType, LPDWORD lpdwSize, LPBYTE lpData) {
LONG lRetVal;
HKEY hKey;
// Detect platform information
OSVERSIONINFO osvi;
osvi.dwOSVersionInfoSize = sizeof(osvi);
GetVersionEx(&osvi);
if (VER_PLATFORM_WIN32_WINDOWS == osvi.dwPlatformId) {
lRetVal = RegOpenKeyExA(
HKEY_LOCAL_MACHINE,
"SOFTWARE\\Space Sciences Laboratory, U.C. Berkeley\\BOINC Diagnostics",
(DWORD)NULL,
KEY_READ,
&hKey
);
if (lRetVal != ERROR_SUCCESS) return FALSE;
} else {
lRetVal = RegOpenKeyExA(
HKEY_CURRENT_USER,
"SOFTWARE\\Space Sciences Laboratory, U.C. Berkeley\\BOINC Diagnostics",
(DWORD)NULL,
KEY_READ,
&hKey
);
if (lRetVal != ERROR_SUCCESS) return FALSE;
}
lRetVal = RegQueryValueExA(hKey, lpName, NULL, lpdwType, lpData, lpdwSize);
RegCloseKey(hKey);
return (lRetVal == ERROR_SUCCESS);
}
// Provide a structure to store process measurements at the time of a
// crash.
typedef struct _BOINC_PROCESSENTRY {
DWORD process_id;
VM_COUNTERS vm_counters;
IO_COUNTERS io_counters;
} BOINC_PROCESSENTRY, *PBOINC_PROCESSENTRY;
static BOINC_PROCESSENTRY diagnostics_process;
// Provide a set of API's which can be used to display more friendly
// information about each thread. These should also be used to
// dump the callstacks for each executing thread when an unhandled
// SEH exception is thrown.
//
// This structure is used to keep track of stuff nessassary
// to dump backtraces for all threads during an abort or
// crash. This is platform specific in nature since it
// depends on the OS datatypes.
typedef struct _BOINC_THREADLISTENTRY {
DWORD thread_id;
HANDLE thread_handle;
BOOL crash_suspend_exempt;
FLOAT crash_kernel_time;
FLOAT crash_user_time;
FLOAT crash_wait_time;
INT crash_priority;
INT crash_base_priority;
INT crash_state;
INT crash_wait_reason;
PEXCEPTION_POINTERS crash_exception_record;
char crash_message[1024];
} BOINC_THREADLISTENTRY, *PBOINC_THREADLISTENTRY;
static std::vector diagnostics_threads;
static HANDLE hThreadListSync;
// Initialize the thread list entry.
int diagnostics_init_thread_entry(PBOINC_THREADLISTENTRY entry) {
entry->thread_id = 0;
entry->thread_handle = 0;
entry->crash_suspend_exempt = FALSE;
entry->crash_kernel_time = 0.0;
entry->crash_user_time = 0.0;
entry->crash_wait_time = 0.0;
entry->crash_priority = 0;
entry->crash_base_priority = 0;
entry->crash_state = 0;
entry->crash_wait_reason = 0;
entry->crash_exception_record = NULL;
strncpy(entry->crash_message, "", sizeof(entry->crash_message));
return 0;
}
// Initialize the thread list, which means empty it if anything is
// in it.
int diagnostics_init_thread_list() {
int retval = 0;
size_t i;
size_t size;
// Create a Mutex that can be used to syncronize data access
// to the global thread list.
hThreadListSync = CreateMutex(NULL, TRUE, NULL);
if (!hThreadListSync) {
fprintf(
stderr, "diagnostics_init_thread_list(): Creating hThreadListSync failed, GLE %d\n", GetLastError()
);
retval = GetLastError();
} else {
size = diagnostics_threads.size();
for (i=0; ithread_id) {
pThread = diagnostics_threads[uiIndex];
}
}
}
return pThread;
}
// Enumerate the running threads in the process space and add them to
// the list. This is the most compatible implementation.
int diagnostics_update_thread_list_9X() {
HANDLE hThreadSnap = INVALID_HANDLE_VALUE;
HANDLE hThread = NULL;
HMODULE hKernel32Lib = NULL;
PBOINC_THREADLISTENTRY pThreadEntry = NULL;
tCT32S pCT32S = NULL;
tT32F pT32F = NULL;
tT32N pT32N = NULL;
tOT pOT = NULL;
THREADENTRY32 te32;
// Which version of the data structure are we using.
te32.dwSize = sizeof(te32);
// Dynamically link to the proper function pointers.
hKernel32Lib = GetModuleHandleA("kernel32.dll");
pCT32S = (tCT32S) GetProcAddress( hKernel32Lib, "CreateToolhelp32Snapshot" );
pT32F = (tT32F) GetProcAddress( hKernel32Lib, "Thread32First" );
pT32N = (tT32N) GetProcAddress( hKernel32Lib, "Thread32Next" );
pOT = (tOT) GetProcAddress( hKernel32Lib, "OpenThread" );
if (!pCT32S || !pT32F || !pT32N) {
return ERROR_NOT_SUPPORTED;
}
// Take a snapshot of all running threads
hThreadSnap = pCT32S(TH32CS_SNAPTHREAD, 0);
if( hThreadSnap == INVALID_HANDLE_VALUE ) {
return GetLastError();
}
// Retrieve information about the first thread,
// and exit if unsuccessful
if( !pT32F( hThreadSnap, &te32 ) ) {
CloseHandle( hThreadSnap );
return GetLastError();
}
// Wait for the ThreadListSync mutex before writing updates
WaitForSingleObject(hThreadListSync, INFINITE);
// Now walk the thread list of the system,
// and display information about each thread
// associated with the specified process
do {
if( te32.th32OwnerProcessID == GetCurrentProcessId() ) {
pThreadEntry = diagnostics_find_thread_entry(te32.th32ThreadID);
if (!pThreadEntry) {
pThreadEntry = new BOINC_THREADLISTENTRY;
diagnostics_init_thread_entry(pThreadEntry);
pThreadEntry->thread_id = te32.th32ThreadID;
if (pOT) {
hThread = pOT(
THREAD_ALL_ACCESS,
FALSE,
te32.th32ThreadID
);
pThreadEntry->thread_handle = hThread;
}
diagnostics_threads.push_back(pThreadEntry);
}
}
}
while( pT32N(hThreadSnap, &te32 ) );
// Release the Mutex
ReleaseMutex(hThreadListSync);
CloseHandle(hThreadSnap);
return 0;
}
// Use the native NT API to get all the process and thread information
// about the current process. This isn't a fully documented API but
// enough information exists that we can rely on it for the known
// Windows OS versions. For each new Windows version check the
// _SYSTEM_PROCESS and _SYSTEM_THREAD structures in the DDK to make
// sure it is compatible with the existing stuff.
int diagnostics_get_process_information(PVOID* ppBuffer, PULONG pcbBuffer) {
int retval = 0;
NTSTATUS Status = STATUS_INFO_LENGTH_MISMATCH;
HANDLE hHeap = GetProcessHeap();
HMODULE hNTDllLib = NULL;
tNTQSI pNTQSI = NULL;
hNTDllLib = GetModuleHandleA("ntdll.dll");
pNTQSI = (tNTQSI)GetProcAddress(hNTDllLib, "NtQuerySystemInformation");
do {
*ppBuffer = HeapAlloc(hHeap, HEAP_ZERO_MEMORY, *pcbBuffer);
if (*ppBuffer == NULL) {
return ERROR_NOT_ENOUGH_MEMORY;
}
Status = pNTQSI(
SystemProcessAndThreadInformation,
*ppBuffer,
*pcbBuffer,
pcbBuffer
);
if (Status == STATUS_INFO_LENGTH_MISMATCH) {
HeapFree(hHeap, (DWORD)NULL, *ppBuffer);
*pcbBuffer *= 2;
} else if (!NT_SUCCESS(Status)) {
HeapFree(hHeap, (DWORD)NULL, *ppBuffer);
retval = Status;
}
} while (Status == STATUS_INFO_LENGTH_MISMATCH);
return retval;
}
// Enumerate the running threads in the process space and add them to
// the list. This only works on NT 4.0 based machines. This also
// includes additional information which can be logged during a crash
// event.
int diagnostics_update_thread_list_NT() {
DWORD dwCurrentProcessId = GetCurrentProcessId();
HANDLE hThread = NULL;
PBOINC_THREADLISTENTRY pThreadEntry = NULL;
ULONG cbBuffer = 32*1024; // 32k initial buffer
PVOID pBuffer = NULL;
PSYSTEM_PROCESSES_NT4 pProcesses = NULL;
PSYSTEM_THREADS pThread = NULL;
UINT uiSystemIndex = 0;
HMODULE hKernel32Lib;
tOT pOT = NULL;
// Dynamically link to the proper function pointers.
hKernel32Lib = GetModuleHandleA("kernel32.dll");
pOT = (tOT) GetProcAddress( hKernel32Lib, "OpenThread" );
// Get a snapshot of the process and thread information.
diagnostics_get_process_information(&pBuffer, &cbBuffer);
// Wait for the ThreadListSync mutex before writing updates
WaitForSingleObject(hThreadListSync, INFINITE);
// Lets start walking the structures to find the good stuff.
pProcesses = (PSYSTEM_PROCESSES_NT4)pBuffer;
do {
// Okay, found the current procceses entry now we just need to
// update the thread data.
if (pProcesses->ProcessId == dwCurrentProcessId) {
// Store the process information we now know about.
diagnostics_process.process_id = pProcesses->ProcessId;
diagnostics_process.vm_counters = pProcesses->VmCounters;
// Enumerate the threads
for(uiSystemIndex = 0; uiSystemIndex < pProcesses->ThreadCount; uiSystemIndex++) {
pThread = &pProcesses->Threads[uiSystemIndex];
pThreadEntry = diagnostics_find_thread_entry(pThread->ClientId.UniqueThread);
if (pThreadEntry) {
pThreadEntry->crash_kernel_time = (FLOAT)pThread->KernelTime.QuadPart;
pThreadEntry->crash_user_time = (FLOAT)pThread->UserTime.QuadPart;
pThreadEntry->crash_wait_time = (FLOAT)pThread->WaitTime;
pThreadEntry->crash_priority = pThread->Priority;
pThreadEntry->crash_base_priority = pThread->BasePriority;
pThreadEntry->crash_state = pThread->State;
pThreadEntry->crash_wait_reason = pThread->WaitReason;
} else {
if (pOT) {
hThread = pOT(
THREAD_ALL_ACCESS,
FALSE,
pThread->ClientId.UniqueThread
);
}
pThreadEntry = new BOINC_THREADLISTENTRY;
diagnostics_init_thread_entry(pThreadEntry);
pThreadEntry->thread_id = pThread->ClientId.UniqueThread;
pThreadEntry->thread_handle = hThread;
pThreadEntry->crash_kernel_time = (FLOAT)pThread->KernelTime.QuadPart;
pThreadEntry->crash_user_time = (FLOAT)pThread->UserTime.QuadPart;
pThreadEntry->crash_wait_time = (FLOAT)pThread->WaitTime;
pThreadEntry->crash_priority = pThread->Priority;
pThreadEntry->crash_base_priority = pThread->BasePriority;
pThreadEntry->crash_state = pThread->State;
pThreadEntry->crash_wait_reason = pThread->WaitReason;
diagnostics_threads.push_back(pThreadEntry);
}
}
}
// Move to the next structure if one exists
if (!pProcesses->NextEntryDelta) {
break;
}
pProcesses = (PSYSTEM_PROCESSES_NT4)(((LPBYTE)pProcesses) + pProcesses->NextEntryDelta);
} while (pProcesses);
// Release resources
if (hThreadListSync) ReleaseMutex(hThreadListSync);
if (pBuffer) HeapFree(GetProcessHeap(), (DWORD)NULL, pBuffer);
return 0;
}
// Enumerate the running threads in the process space and add them to
// the list. This only works on XP or better based machines. This also
// includes additional information which can be logged during a crash
// event.
int diagnostics_update_thread_list_XP() {
DWORD dwCurrentProcessId = GetCurrentProcessId();
HANDLE hThread = NULL;
PBOINC_THREADLISTENTRY pThreadEntry = NULL;
ULONG cbBuffer = 32*1024; // 32k initial buffer
PVOID pBuffer = NULL;
PSYSTEM_PROCESSES pProcesses = NULL;
PSYSTEM_THREADS pThread = NULL;
UINT uiSystemIndex = 0;
HMODULE hKernel32Lib;
tOT pOT = NULL;
// Dynamically link to the proper function pointers.
hKernel32Lib = GetModuleHandleA("kernel32.dll");
pOT = (tOT) GetProcAddress( hKernel32Lib, "OpenThread" );
// Get a snapshot of the process and thread information.
diagnostics_get_process_information(&pBuffer, &cbBuffer);
// Wait for the ThreadListSync mutex before writing updates
WaitForSingleObject(hThreadListSync, INFINITE);
// Lets start walking the structures to find the good stuff.
pProcesses = (PSYSTEM_PROCESSES)pBuffer;
do {
// Okay, found the current procceses entry now we just need to
// update the thread data.
if (pProcesses->ProcessId == dwCurrentProcessId) {
// Store the process information we now know about.
diagnostics_process.process_id = pProcesses->ProcessId;
diagnostics_process.vm_counters = pProcesses->VmCounters;
diagnostics_process.io_counters = pProcesses->IoCounters;
// Enumerate the threads
for(uiSystemIndex = 0; uiSystemIndex < pProcesses->ThreadCount; uiSystemIndex++) {
pThread = &pProcesses->Threads[uiSystemIndex];
pThreadEntry = diagnostics_find_thread_entry(pThread->ClientId.UniqueThread);
if (pThreadEntry) {
pThreadEntry->crash_kernel_time = (FLOAT)pThread->KernelTime.QuadPart;
pThreadEntry->crash_user_time = (FLOAT)pThread->UserTime.QuadPart;
pThreadEntry->crash_wait_time = (FLOAT)pThread->WaitTime;
pThreadEntry->crash_priority = pThread->Priority;
pThreadEntry->crash_base_priority = pThread->BasePriority;
pThreadEntry->crash_state = pThread->State;
pThreadEntry->crash_wait_reason = pThread->WaitReason;
} else {
if (pOT) {
hThread = pOT(
THREAD_ALL_ACCESS,
FALSE,
pThread->ClientId.UniqueThread
);
}
pThreadEntry = new BOINC_THREADLISTENTRY;
diagnostics_init_thread_entry(pThreadEntry);
pThreadEntry->thread_id = pThread->ClientId.UniqueThread;
pThreadEntry->thread_handle = hThread;
pThreadEntry->crash_kernel_time = (FLOAT)pThread->KernelTime.QuadPart;
pThreadEntry->crash_user_time = (FLOAT)pThread->UserTime.QuadPart;
pThreadEntry->crash_wait_time = (FLOAT)pThread->WaitTime;
pThreadEntry->crash_priority = pThread->Priority;
pThreadEntry->crash_base_priority = pThread->BasePriority;
pThreadEntry->crash_state = pThread->State;
pThreadEntry->crash_wait_reason = pThread->WaitReason;
diagnostics_threads.push_back(pThreadEntry);
}
}
}
// Move to the next structure if one exists
if (!pProcesses->NextEntryDelta) {
break;
}
pProcesses = (PSYSTEM_PROCESSES)(((LPBYTE)pProcesses) + pProcesses->NextEntryDelta);
} while (pProcesses);
// Release resources
if (hThreadListSync) ReleaseMutex(hThreadListSync);
if (pBuffer) HeapFree(GetProcessHeap(), (DWORD)NULL, pBuffer);
return 0;
}
// Determine which update thread list function to call based on OS
// version.
int diagnostics_update_thread_list() {
int retval = 0;
// Detect platform information
OSVERSIONINFO osvi;
osvi.dwOSVersionInfoSize = sizeof(osvi);
GetVersionEx(&osvi);
switch(osvi.dwPlatformId) {
case VER_PLATFORM_WIN32_WINDOWS:
// Win95, Win98, WinME
retval = diagnostics_update_thread_list_9X();
break;
case VER_PLATFORM_WIN32_NT:
switch(osvi.dwMajorVersion) {
case 4:
// WinNT 4.0
retval = diagnostics_update_thread_list_NT();
break;
case 5:
// Win2k, WinXP, Win2k3
retval = diagnostics_update_thread_list_XP();
break;
case 6:
if (osvi.dwMinorVersion == 0) {
// WinVista
retval = diagnostics_update_thread_list_XP();
} else {
// In cases where we do not know if the interfaces have
// changed from the ones we know about, just default to
// the most compatible implementation.
retval = diagnostics_update_thread_list_9X();
}
break;
default:
// In cases where we do not know if the interfaces have
// changed from the ones we know about, just default to
// the most compatible implementation.
retval = diagnostics_update_thread_list_9X();
break;
}
break;
}
return retval;
}
// Set the cached exception record for the current thread, let the exception monitor
// thread dump the human readable exception information.
int diagnostics_set_thread_exception_record(PEXCEPTION_POINTERS pExPtrs) {
HANDLE hThread;
PBOINC_THREADLISTENTRY pThreadEntry = NULL;
// Wait for the ThreadListSync mutex before writing updates
WaitForSingleObject(hThreadListSync, INFINITE);
pThreadEntry = diagnostics_find_thread_entry(GetCurrentThreadId());
if (pThreadEntry) {
pThreadEntry->crash_exception_record = pExPtrs;
} else {
DuplicateHandle(
GetCurrentProcess(),
GetCurrentThread(),
GetCurrentProcess(),
&hThread,
0,
FALSE,
DUPLICATE_SAME_ACCESS
);
pThreadEntry = new BOINC_THREADLISTENTRY;
diagnostics_init_thread_entry(pThreadEntry);
pThreadEntry->thread_id = GetCurrentThreadId();
pThreadEntry->thread_handle = hThread;
pThreadEntry->crash_exception_record = pExPtrs;
diagnostics_threads.push_back(pThreadEntry);
}
// Release the Mutex
ReleaseMutex(hThreadListSync);
return 0;
}
// Set the current thread to suspend exempt status. Prevents deadlocks.
int diagnostics_set_thread_exempt_suspend() {
HANDLE hThread;
PBOINC_THREADLISTENTRY pThreadEntry = NULL;
// Wait for the ThreadListSync mutex before writing updates
WaitForSingleObject(hThreadListSync, INFINITE);
pThreadEntry = diagnostics_find_thread_entry(GetCurrentThreadId());
if (pThreadEntry) {
pThreadEntry->crash_suspend_exempt = TRUE;
} else {
DuplicateHandle(
GetCurrentProcess(),
GetCurrentThread(),
GetCurrentProcess(),
&hThread,
0,
FALSE,
DUPLICATE_SAME_ACCESS
);
pThreadEntry = new BOINC_THREADLISTENTRY;
diagnostics_init_thread_entry(pThreadEntry);
pThreadEntry->thread_id = GetCurrentThreadId();
pThreadEntry->thread_handle = hThread;
pThreadEntry->crash_suspend_exempt = TRUE;
diagnostics_threads.push_back(pThreadEntry);
}
// Release the Mutex
ReleaseMutex(hThreadListSync);
return 0;
}
// Checks to see if the specified thread id is flagged for suspend exempt status.
// returns 0 on true, 1 on false. Couldn't use a bool data type since the function
// prototype needs to be compatible with C.
int diagnostics_is_thread_exempt_suspend(long thread_id) {
int retval = 1;
PBOINC_THREADLISTENTRY pThreadEntry = NULL;
// Wait for the ThreadListSync mutex before writing updates
WaitForSingleObject(hThreadListSync, INFINITE);
pThreadEntry = diagnostics_find_thread_entry(thread_id);
if (pThreadEntry) {
if (pThreadEntry->crash_suspend_exempt) {
retval = 0;
}
}
// Release the Mutex
ReleaseMutex(hThreadListSync);
return retval;
}
// Set the current thread's crash message.
int diagnostics_set_thread_crash_message(char* message) {
HANDLE hThread;
PBOINC_THREADLISTENTRY pThreadEntry = NULL;
// Wait for the ThreadListSync mutex before writing updates
WaitForSingleObject(hThreadListSync, INFINITE);
pThreadEntry = diagnostics_find_thread_entry(GetCurrentThreadId());
if (pThreadEntry) {
int buffer_used = snprintf(
pThreadEntry->crash_message,
sizeof(pThreadEntry->crash_message),
"%s",
message
);
if ((sizeof(pThreadEntry->crash_message) == buffer_used) || (-1 == buffer_used)) {
pThreadEntry->crash_message[sizeof(pThreadEntry->crash_message)-1] = '\0';
}
} else {
DuplicateHandle(
GetCurrentProcess(),
GetCurrentThread(),
GetCurrentProcess(),
&hThread,
0,
FALSE,
DUPLICATE_SAME_ACCESS
);
pThreadEntry = new BOINC_THREADLISTENTRY;
diagnostics_init_thread_entry(pThreadEntry);
pThreadEntry->thread_id = GetCurrentThreadId();
pThreadEntry->thread_handle = hThread;
int buffer_used = snprintf(
pThreadEntry->crash_message,
sizeof(pThreadEntry->crash_message),
"%s",
message
);
if ((sizeof(pThreadEntry->crash_message) == buffer_used) || (-1 == buffer_used)) {
pThreadEntry->crash_message[sizeof(pThreadEntry->crash_message)-1] = '\0';
}
diagnostics_threads.push_back(pThreadEntry);
}
// Release the Mutex
ReleaseMutex(hThreadListSync);
return 0;
}
// Translate the thread state into a human readable form.
//
// See: http://support.microsoft.com/?kbid=837372
//
char* diagnostics_format_thread_state(int thread_state) {
switch(thread_state) {
case ThreadStateInitialized: return "Initialized";
case ThreadStateReady: return "Ready";
case ThreadStateRunning: return "Running";
case ThreadStateStandby: return "Standby";
case ThreadStateTerminated: return "Terminated";
case ThreadStateWaiting: return "Waiting";
case ThreadStateTransition: return "Transition";
default: return "Unknown";
}
return "";
}
// Translate the thread wait reason into a human readable form.
//
// See: http://support.microsoft.com/?kbid=837372
//
char* diagnostics_format_thread_wait_reason(int thread_wait_reason) {
switch(thread_wait_reason) {
case ThreadWaitReasonExecutive: return "Executive";
case ThreadWaitReasonFreePage: return "FreePage";
case ThreadWaitReasonPageIn: return "PageIn";
case ThreadWaitReasonPoolAllocation: return "PoolAllocation";
case ThreadWaitReasonDelayExecution: return "ExecutionDelay";
case ThreadWaitReasonSuspended: return "Suspended";
case ThreadWaitReasonUserRequest: return "UserRequest";
case ThreadWaitReasonWrExecutive: return "Executive";
case ThreadWaitReasonWrFreePage: return "FreePage";
case ThreadWaitReasonWrPageIn: return "PageIn";
case ThreadWaitReasonWrPoolAllocation: return "PoolAllocation";
case ThreadWaitReasonWrDelayExecution: return "ExecutionDelay";
case ThreadWaitReasonWrSuspended: return "Suspended";
case ThreadWaitReasonWrUserRequest: return "UserRequest";
case ThreadWaitReasonWrEventPairHigh: return "EventPairHigh";
case ThreadWaitReasonWrEventPairLow: return "EventPairLow";
case ThreadWaitReasonWrLpcReceive: return "LPCReceive";
case ThreadWaitReasonWrLpcReply: return "LPCReply";
case ThreadWaitReasonWrVirtualMemory: return "VirtualMemory";
case ThreadWaitReasonWrPageOut: return "PageOut";
default: return "Unknown";
}
return "";
}
// Translate the process priority class into a human readable form.
//
// See: http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/scheduling_priorities.asp
//
char* diagnostics_format_process_priority(int process_priority) {
switch(process_priority) {
case IDLE_PRIORITY_CLASS: return "Idle";
case BELOW_NORMAL_PRIORITY_CLASS: return "Below Normal";
case NORMAL_PRIORITY_CLASS: return "Normal";
case ABOVE_NORMAL_PRIORITY_CLASS: return "Above Normal";
case HIGH_PRIORITY_CLASS: return "High";
case REALTIME_PRIORITY_CLASS: return "Realtime";
default: return "Unknown";
}
return "";
}
// Translate the thread priority class into a human readable form.
//
// See: http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/scheduling_priorities.asp
//
char* diagnostics_format_thread_priority(int thread_priority) {
switch(thread_priority) {
case THREAD_PRIORITY_IDLE: return "Idle";
case THREAD_PRIORITY_LOWEST: return "Lowest";
case THREAD_PRIORITY_BELOW_NORMAL: return "Below Normal";
case THREAD_PRIORITY_NORMAL: return "Normal";
case THREAD_PRIORITY_ABOVE_NORMAL: return "Above Normal";
case THREAD_PRIORITY_HIGHEST: return "Highest";
case THREAD_PRIORITY_TIME_CRITICAL: return "Time Critical";
default: return "Unknown";
}
return "";
}
// Provide a mechinism to trap and report messages sent to the debugger's
// viewport. This should only been enabled if a debugger isn't running
// against the current process already.
//
// Documentation about the protocol can be found here:
// http://www.unixwiz.net/techtips/outputdebugstring.html
//
typedef struct _DEBUGGERMESSAGE {
DWORD dwProcessId;
char data[4096 - sizeof(DWORD)];
} DEBUGGERMESSAGE, *PDEBUGGERMESSAGE;
typedef struct _BOINC_MESSAGEMONITORENTRY {
double timestamp;
std::string message;
} BOINC_MESSAGEMONITORENTRY, *PBOINC_MESSAGEMONITORENTRY;
static std::vector diagnostics_monitor_messages;
static PDEBUGGERMESSAGE pMessageBuffer;
static UINT uiMessageMonitorThreadId;
static HANDLE hMessageMonitorThread;
static HANDLE hMessageMonitorSync;
static HANDLE hMessageSharedMap;
static HANDLE hMessageAckEvent;
static HANDLE hMessageReadyEvent;
static HANDLE hMessageQuitEvent;
static HANDLE hMessageQuitFinishedEvent;
// Initialize the needed structures and startup the message processing thread.
//
int diagnostics_init_message_monitor() {
int retval = 0;
unsigned int i;
DWORD dwType;
DWORD dwSize;
DWORD dwCaptureMessages;
HMODULE hKernel32Lib;
tIDP pIDP = NULL;
SECURITY_ATTRIBUTES sa;
SECURITY_DESCRIPTOR sd;
sa.nLength = sizeof(SECURITY_ATTRIBUTES);
sa.bInheritHandle = TRUE;
sa.lpSecurityDescriptor = &sd;
InitializeSecurityDescriptor(&sd, SECURITY_DESCRIPTOR_REVISION);
SetSecurityDescriptorDacl(&sd, TRUE, (PACL)NULL, FALSE);
// Create a mutex that can be used to syncronize data access
// to the global thread list.
hMessageMonitorSync = CreateMutex(NULL, TRUE, NULL);
if (!hMessageMonitorSync) {
fprintf(
stderr, "diagnostics_init_message_monitor(): Creating hMessageMonitorSync failed, GLE %d\n", GetLastError()
);
}
// Clear out any previous messages.
for (i=0; itimestamp),
pMessageEntry->message.c_str()
);
}
fprintf(stderr, "\n\n");
// Release the Mutex
ReleaseMutex(hMessageMonitorSync);
return 0;
}
// This thread monitors the shared memory buffer used to pass debug messages
// around. due to an anomaly in the Windows debug environment it is
// suggested that a sleep(0) be introduced before any
// SetEvent/ResetEvent/PulseEvent function is called.
//
// See: http://support.microsoft.com/kb/q173260/
//
UINT WINAPI diagnostics_message_monitor(LPVOID /* lpParameter */) {
DWORD dwEvent = (DWORD)NULL;
DWORD dwCurrentProcessId = (DWORD)NULL;
BOOL bContinue = TRUE;
DWORD dwRepeatMessageCounter = 0;
DWORD dwRepeatMessageProcessId = 0;
std::string strRepeatMessage;
PBOINC_MESSAGEMONITORENTRY pMessageEntry = NULL;
HANDLE hEvents[2];
// Make sure this thread doesn't get suspended during
// a crash dump, the DBGHELP library is pretty verbose.
// Suspending this thread will cause a deadlock.
diagnostics_set_thread_exempt_suspend();
// Which events do we want to wait for?
hEvents[0] = hMessageQuitEvent;
hEvents[1] = hMessageReadyEvent;
// Cache the current process id
dwCurrentProcessId = GetCurrentProcessId();
// Signal that the buffer is ready for action.
Sleep(0);
SetEvent(hMessageAckEvent);
while (bContinue) {
dwEvent = WaitForMultipleObjects(
2, // number of objects in array
hEvents, // array of objects
FALSE, // wait for any
INFINITE // wait
);
switch(dwEvent) {
// hMessageQuitEvent was signaled.
case WAIT_OBJECT_0 + 0:
// We are shutting down so lets cleanup and exit.
bContinue = false;
break;
// hMessageReadyEvent was signaled.
case WAIT_OBJECT_0 + 1:
// The debugger protocol assumes that only one debugger is going
// to exist on the system, but we are only interested in messages
// from the current process id. Since we are here we can assume
// that no debugger was present when the application was launched
// so we can safely ignore messages that didn't come from us
// because that means they are from another application.
//
// If we detect a message from a different process just ignore it
// and re-signal the event. We'll go to sleep for 100 milliseconds
// and let the other BOINC based applications have a shot at it.
//
// If we see the same message four times that means it is from an
// application that doesn't understand our modificatons, so we'll
// process the message just like we were a regular debugger and
// signal that the buffer is available again.
if (dwCurrentProcessId != pMessageBuffer->dwProcessId) {
// Message from a different process.
// Is this the same message as before?
if ((dwRepeatMessageProcessId != pMessageBuffer->dwProcessId) ||
(strRepeatMessage != pMessageBuffer->data)
) {
dwRepeatMessageCounter = 0;
// Cache the data for future checks.
dwRepeatMessageProcessId = pMessageBuffer->dwProcessId;
strRepeatMessage = pMessageBuffer->data;
} else {
dwRepeatMessageCounter++;
}
if (dwRepeatMessageCounter > 4) {
// Buffer is ready to receive a new message.
Sleep(0);
SetEvent(hMessageAckEvent);
dwRepeatMessageCounter = 0;
dwRepeatMessageProcessId = 0;
strRepeatMessage = "";
} else {
// Let another application have a go at the message.
Sleep(0);
SetEvent(hMessageReadyEvent);
Sleep(100);
}
} else {
// A message for us to process
pMessageEntry = new BOINC_MESSAGEMONITORENTRY;
pMessageEntry->timestamp = dtime();
pMessageEntry->message = pMessageBuffer->data;
// Wait for the MessageMonitorSync mutex before writing updates
WaitForSingleObject(hMessageMonitorSync, INFINITE);
diagnostics_monitor_messages.push_back(pMessageEntry);
// Trim back the number of messages in memory
if (diagnostics_monitor_messages.size() > 50) {
delete diagnostics_monitor_messages[0];
diagnostics_monitor_messages.erase(diagnostics_monitor_messages.begin());
}
// Release the Mutex
ReleaseMutex(hMessageMonitorSync);
// Clear out the old message
ZeroMemory(pMessageBuffer, sizeof(DEBUGGERMESSAGE));
// Buffer is ready to receive a new message.
Sleep(0);
SetEvent(hMessageAckEvent);
}
break;
}
}
// Notify the calling thread that the message monitoring thread is
// finished.
SetEvent(hMessageQuitFinishedEvent);
return 0;
}
// Structured Exceptions are Windows primary mechanism for dealing with
// badly behaved applications or applications where something bad has
// happened underneath them and they need to clean up after themselves.
//
// Applications can define an unhandled exception filter to handle any
// exception event that Windows will throw. If you leave things to
// the OS defaults, you'll end up with the annoying Windows Error
// Reporting dialog and they user will be asked if they want to report
// the crash to Microsoft. Most of the time this is okay for regular
// applications, but for BOINC based applications this is really bad.
//
// BOINC based applications need to be completely autonomous. Unhandled
// exceptions are caught and we dump as much information, about what
// has happened, to stderr so that project administrators can look at
// it and fix whatever bug might have caused the event.
//
// To accomplish this BOINC starts up a thread that will handle any
// unhandled exceptions when one is detected. By using a separate
// thread the runtime debugger can avoid stack corruption issues and
// multiple unhandled exceptions. In a multi-processor system it is
// possible that both the graphics thread and the worker threads would
// be referencing the same corrupted area of memory. Previous
// implementations of the runtime debugger would have just terminated
// the process believing it was a nested unhandled exception instead
// of believing it to be two seperate exceptions thrown from different
// threads.
//
// This structure is used to keep track of stuff nessassary
// to dump information about the top most window during
// a crash event.
typedef struct _BOINC_WINDOWCAPTURE {
HWND hwnd;
char window_name[256];
char window_class[256];
DWORD window_process_id;
DWORD window_thread_id;
} BOINC_WINDOWCAPTURE, *PBOINC_WINDOWCAPTURE;
static UINT uiExceptionMonitorThreadId = (UINT)NULL;
static HANDLE hExceptionMonitorThread = NULL;
static HANDLE hExceptionMonitorHalt = NULL;
static HANDLE hExceptionMonitorStartedEvent = NULL;
static HANDLE hExceptionDetectedEvent = NULL;
static HANDLE hExceptionQuitEvent = NULL;
static HANDLE hExceptionQuitFinishedEvent = NULL;
static CRITICAL_SECTION csExceptionMonitorFallback;
// Initialize the needed structures and startup the unhandled exception
// monitor thread.
int diagnostics_init_unhandled_exception_monitor() {
int retval = 0;
// Initialize the fallback critical section in case we fail to create the
// unhandled exception monitor.
InitializeCriticalSection(&csExceptionMonitorFallback);
// Create a mutex that can be used to put any thread that has thrown
// an unhandled exception to sleep.
hExceptionMonitorHalt = CreateMutex(NULL, FALSE, NULL);
if (!hExceptionMonitorHalt) {
fprintf(
stderr, "diagnostics_init_unhandled_exception_monitor(): Creating hExceptionMonitorHalt failed, GLE %d\n", GetLastError()
);
}
// The following event is thrown by the exception monitoring thread
// right before it waits for the hExceptionDetectedEvent event.
hExceptionMonitorStartedEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
if (!hExceptionMonitorStartedEvent) {
fprintf(
stderr, "diagnostics_init_unhandled_exception_monitor(): Creating hExceptionMonitorStartedEvent failed, GLE %d\n", GetLastError()
);
}
// The following event is thrown by a thread that has experienced an
// unhandled exception after storing its exception record but before
// it attempts to aquire the halt mutex.
hExceptionDetectedEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
if (!hExceptionDetectedEvent) {
fprintf(
stderr, "diagnostics_init_unhandled_exception_monitor(): Creating hExceptionDetectedEvent failed, GLE %d\n", GetLastError()
);
}
// Create an event that we can use to shutdown the unhandled exception
// monitoring thread.
hExceptionQuitEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
if (!hExceptionQuitEvent) {
fprintf(
stderr, "diagnostics_init_unhandled_exception_monitor(): Creating hExceptionQuitEvent failed, GLE %d\n", GetLastError()
);
}
hExceptionQuitFinishedEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
if (!hExceptionQuitFinishedEvent) {
fprintf(
stderr, "diagnostics_init_unhandled_exception_monitor(): Creating hExceptionQuitFinishedEvent failed, GLE %d\n", GetLastError()
);
}
// Create the thread that is going to monitor any unhandled exceptions
// NOTE: Only attempt to create the thread if all the thread sync objects
// have been created.
if (hExceptionMonitorHalt && hExceptionDetectedEvent && hExceptionQuitEvent && hExceptionQuitFinishedEvent) {
hExceptionMonitorThread = (HANDLE)_beginthreadex(
NULL,
0,
diagnostics_unhandled_exception_monitor,
0,
0,
&uiExceptionMonitorThreadId
);
if (!hExceptionMonitorThread) {
fprintf(
stderr, "diagnostics_init_unhandled_exception_monitor(): Creating hExceptionMonitorThread failed, errno %d\n", errno
);
}
}
if (!hExceptionMonitorThread) {
fprintf(
stderr, "WARNING: BOINC Windows Runtime Debugger has been disabled.\n"
);
retval = ERR_THREAD;
} else {
// Wait until the exception monitor is ready for business.
//
WaitForSingleObject(hExceptionMonitorStartedEvent, INFINITE);
}
return retval;
}
// Shutdown the unhandled exception monitoring thread and cleanup any
// of the in memory structures.
int diagnostics_finish_unhandled_exception_monitor() {
// Begin the cleanup process by means of shutting down the
// message monitoring thread.
SetEvent(hExceptionQuitEvent);
// Wait until it is message monitoring thread is shutdown before
// cleaning up the structure since we'll need to aquire the
// MessageMonitorSync mutex.
WaitForSingleObject(hExceptionQuitFinishedEvent, INFINITE);
// Cleanup the handles
if (hExceptionDetectedEvent) CloseHandle(hExceptionDetectedEvent);
if (hExceptionQuitEvent) CloseHandle(hExceptionQuitEvent);
if (hExceptionQuitFinishedEvent) CloseHandle(hExceptionQuitFinishedEvent);
if (hExceptionMonitorHalt) CloseHandle(hExceptionMonitorHalt);
if (hExceptionMonitorThread) CloseHandle(hExceptionMonitorThread);
// Cleanup the fallback critical section.
DeleteCriticalSection(&csExceptionMonitorFallback);
return 0;
}
// Dump crash header information
//
int diagnostics_unhandled_exception_dump_banner() {
char szDate[64];
char szTime[64];
strdate(szDate);
strtime(szTime);
fprintf(stderr, "\n\n");
fprintf(stderr, "********************\n");
fprintf(stderr, "\n\n");
fprintf(stderr, "BOINC Windows Runtime Debugger Version %s\n", BOINC_VERSION_STRING);
fprintf(stderr, "\n\n");
fprintf(stderr, "Dump Timestamp : %s %s\n", szDate, szTime);
if (diagnostics_is_flag_set(BOINC_DIAG_BOINCAPPLICATION)) {
fprintf(stderr, "Install Directory : %s\n", diagnostics_get_boinc_install_dir());
fprintf(stderr, "Data Directory : %s\n", diagnostics_get_boinc_dir());
fprintf(stderr, "Project Symstore : %s\n", diagnostics_get_symstore());
}
return 0;
}
// Capture the foreground window details for future use.
//
int diagnostics_capture_foreground_window(PBOINC_WINDOWCAPTURE window_info) {
DWORD dwType;
DWORD dwSize;
DWORD dwCaptureForegroundWindow;
// Initialize structure variables.
strcpy(window_info->window_name, "");
strcpy(window_info->window_class, "");
window_info->hwnd = 0;
window_info->window_process_id = 0;
window_info->window_thread_id = 0;
// Check the registry to see if we are aloud to capture the foreground
// window data. Many people were concerned about privacy issues.
//
// We'll turn it off by default, but keep it around just in case we need
// it.
//
dwCaptureForegroundWindow = 0;
dwType = REG_DWORD;
dwSize = sizeof(dwCaptureForegroundWindow);
diagnostics_get_registry_value(
"CaptureForegroundWindow",
&dwType,
&dwSize,
(LPBYTE)&dwCaptureForegroundWindow
);
if (dwCaptureForegroundWindow) {
window_info->hwnd = GetForegroundWindow();
window_info->window_thread_id = GetWindowThreadProcessId(
window_info->hwnd,
&window_info->window_process_id
);
// Only query the window text from windows in a different process space.
// All threads that might have windows are suspended in this process
// space and attempting to get the window text will deadlock the exception
// handler.
if (window_info->window_process_id != GetCurrentProcessId()) {
GetWindowTextA(
window_info->hwnd,
window_info->window_name,
sizeof(window_info->window_name)
);
GetClassNameA(
window_info->hwnd,
window_info->window_class,
sizeof(window_info->window_class)
);
}
}
return 0;
}
// Dump the foreground window details to stderr.
//
int diagnostics_foreground_window_dump(PBOINC_WINDOWCAPTURE window_info) {
fprintf(
stderr,
"*** Foreground Window Data ***\n"
" Window Name : %s\n"
" Window Class : %s\n"
" Window Process ID: %x\n"
" Window Thread ID : %x\n\n",
window_info->window_name,
window_info->window_class,
window_info->window_process_id,
window_info->window_thread_id
);
return 0;
}
// Dump the captured information for a the current process.
//
int diagnostics_dump_process_information() {
// Header
fprintf(
stderr,
"*** Dump of the Process Statistics: ***\n\n"
);
// I/O Counters
fprintf(
stderr,
"- I/O Operations Counters -\n"
"Read: %d, Write: %d, Other %d\n"
"\n"
"- I/O Transfers Counters -\n"
"Read: %d, Write: %d, Other %d\n"
"\n",
diagnostics_process.io_counters.ReadOperationCount,
diagnostics_process.io_counters.WriteOperationCount,
diagnostics_process.io_counters.OtherOperationCount,
diagnostics_process.io_counters.ReadTransferCount,
diagnostics_process.io_counters.WriteTransferCount,
diagnostics_process.io_counters.OtherTransferCount
);
// VM Counters
fprintf(
stderr,
"- Paged Pool Usage -\n"
"QuotaPagedPoolUsage: %d, QuotaPeakPagedPoolUsage: %d\n"
"QuotaNonPagedPoolUsage: %d, QuotaPeakNonPagedPoolUsage: %d\n"
"\n"
"- Virtual Memory Usage -\n"
"VirtualSize: %d, PeakVirtualSize: %d\n"
"\n"
"- Pagefile Usage -\n"
"PagefileUsage: %d, PeakPagefileUsage: %d\n"
"\n"
"- Working Set Size -\n"
"WorkingSetSize: %d, PeakWorkingSetSize: %d, PageFaultCount: %d\n"
"\n",
diagnostics_process.vm_counters.QuotaPagedPoolUsage,
diagnostics_process.vm_counters.QuotaPeakPagedPoolUsage,
diagnostics_process.vm_counters.QuotaNonPagedPoolUsage,
diagnostics_process.vm_counters.QuotaPeakNonPagedPoolUsage,
diagnostics_process.vm_counters.VirtualSize,
diagnostics_process.vm_counters.PeakVirtualSize,
diagnostics_process.vm_counters.PagefileUsage,
diagnostics_process.vm_counters.PeakPagefileUsage,
diagnostics_process.vm_counters.WorkingSetSize,
diagnostics_process.vm_counters.PeakWorkingSetSize,
diagnostics_process.vm_counters.PageFaultCount
);
return 0;
}
// Dump the captured information for a given thread.
//
int diagnostics_dump_thread_information(PBOINC_THREADLISTENTRY pThreadEntry) {
std::string strStatusExtra;
if (pThreadEntry->crash_state == ThreadStateWaiting) {
strStatusExtra += "Wait Reason: ";
strStatusExtra += diagnostics_format_thread_wait_reason(pThreadEntry->crash_wait_reason);
strStatusExtra += ", ";
} else {
strStatusExtra += "Base Priority: ";
strStatusExtra += diagnostics_format_thread_priority(pThreadEntry->crash_base_priority);
strStatusExtra += ", ";
strStatusExtra += "Priority: ";
strStatusExtra += diagnostics_format_thread_priority(pThreadEntry->crash_priority);
strStatusExtra += ", ";
}
fprintf(
stderr,
"*** Dump of thread ID %d (state: %s): ***\n\n"
"- Information -\n"
"Status: %s, "
"Kernel Time: %f, "
"User Time: %f, "
"Wait Time: %f\n"
"\n",
pThreadEntry->thread_id,
diagnostics_format_thread_state(pThreadEntry->crash_state),
strStatusExtra.c_str(),
pThreadEntry->crash_kernel_time,
pThreadEntry->crash_user_time,
pThreadEntry->crash_wait_time
);
return 0;
}
// Provide a generic way to format exceptions
//
int diagnostics_dump_generic_exception(char* exception_desc, DWORD exception_code, PVOID exception_address) {
fprintf(
stderr,
"Reason: %s (0x%x) at address 0x%p\n\n",
exception_desc,
exception_code,
exception_address
);
return 0;
}
// Dump the exception code record to stderr in a human readable form.
//
int diagnostics_dump_exception_record(PEXCEPTION_POINTERS pExPtrs) {
char status[256];
char substatus[256];
char message[1024];
PVOID exception_address = pExPtrs->ExceptionRecord->ExceptionAddress;
DWORD exception_code = pExPtrs->ExceptionRecord->ExceptionCode;
PDelayLoadInfo delay_load_info = NULL;
// Print unhandled exception banner
fprintf(stderr, "- Unhandled Exception Record -\n");
switch (exception_code) {
case VcppException(ERROR_SEVERITY_ERROR, ERROR_MOD_NOT_FOUND):
delay_load_info = (PDelayLoadInfo)pExPtrs->ExceptionRecord->ExceptionInformation[0];
fprintf(
stderr,
"Delay Load Failure: Attempting to load '%s' failed.\n\n",
delay_load_info->szDll
);
break;
case VcppException(ERROR_SEVERITY_ERROR, ERROR_PROC_NOT_FOUND):
delay_load_info = (PDelayLoadInfo)pExPtrs->ExceptionRecord->ExceptionInformation[0];
fprintf(
stderr,
"Delay Load Failure: Attempting to find '%s' in '%s' failed.\n\n",
delay_load_info->dlp.szProcName,
delay_load_info->szDll
);
break;
case 0xC0000135: // STATUS_DLL_NOT_FOUND
case 0xC0000139: // STATUS_ENTRYPOINT_NOT_FOUND
case 0xC0000142: // STATUS_DLL_INIT_FAILED
case 0xC0000143: // STATUS_MISSING_SYSTEMFILE
fprintf(stderr, "%s\n\n", windows_format_error_string(exception_code, message, sizeof(message)));
break;
case 0xE06D7363:
diagnostics_dump_generic_exception("Out Of Memory (C++ Exception)", exception_code, exception_address);
break;
case EXCEPTION_ACCESS_VIOLATION:
strcpy(status, "Access Violation");
strcpy(substatus, "");
if (pExPtrs->ExceptionRecord->NumberParameters == 2) {
switch(pExPtrs->ExceptionRecord->ExceptionInformation[0]) {
case 0: // read attempt
sprintf(substatus,
"read attempt to address 0x%8.8X",
pExPtrs->ExceptionRecord->ExceptionInformation[1]
);
break;
case 1: // write attempt
sprintf(substatus,
"write attempt to address 0x%8.8X",
pExPtrs->ExceptionRecord->ExceptionInformation[1]
);
break;
}
}
fprintf(stderr,
"Reason: %s (0x%x) at address 0x%p %s\n\n",
status, exception_code, exception_address, substatus
);
break;
case EXCEPTION_DATATYPE_MISALIGNMENT:
diagnostics_dump_generic_exception("Data Type Misalignment", exception_code, exception_address);
break;
case EXCEPTION_BREAKPOINT:
diagnostics_dump_generic_exception("Breakpoint Encountered", exception_code, exception_address);
break;
case EXCEPTION_SINGLE_STEP:
diagnostics_dump_generic_exception("Single Instruction Executed", exception_code, exception_address);
break;
case EXCEPTION_ARRAY_BOUNDS_EXCEEDED:
diagnostics_dump_generic_exception("Array Bounds Exceeded", exception_code, exception_address);
break;
case EXCEPTION_FLT_DENORMAL_OPERAND:
diagnostics_dump_generic_exception("Float Denormal Operand", exception_code, exception_address);
break;
case EXCEPTION_FLT_DIVIDE_BY_ZERO:
diagnostics_dump_generic_exception("Divide by Zero", exception_code, exception_address);
break;
case EXCEPTION_FLT_INEXACT_RESULT:
diagnostics_dump_generic_exception("Float Inexact Result", exception_code, exception_address);
break;
case EXCEPTION_FLT_INVALID_OPERATION:
diagnostics_dump_generic_exception("Float Invalid Operation", exception_code, exception_address);
break;
case EXCEPTION_FLT_OVERFLOW:
diagnostics_dump_generic_exception("Float Overflow", exception_code, exception_address);
break;
case EXCEPTION_FLT_STACK_CHECK:
diagnostics_dump_generic_exception("Float Stack Check", exception_code, exception_address);
break;
case EXCEPTION_FLT_UNDERFLOW:
diagnostics_dump_generic_exception("Float Underflow", exception_code, exception_address);
break;
case EXCEPTION_INT_DIVIDE_BY_ZERO:
diagnostics_dump_generic_exception("Integer Divide by Zero", exception_code, exception_address);
break;
case EXCEPTION_INT_OVERFLOW:
diagnostics_dump_generic_exception("Integer Overflow", exception_code, exception_address);
break;
case EXCEPTION_PRIV_INSTRUCTION:
diagnostics_dump_generic_exception("Privileged Instruction", exception_code, exception_address);
break;
case EXCEPTION_IN_PAGE_ERROR:
diagnostics_dump_generic_exception("In Page Error", exception_code, exception_address);
break;
case EXCEPTION_ILLEGAL_INSTRUCTION:
diagnostics_dump_generic_exception("Illegal Instruction", exception_code, exception_address);
break;
case EXCEPTION_NONCONTINUABLE_EXCEPTION:
diagnostics_dump_generic_exception("Noncontinuable Exception", exception_code, exception_address);
break;
case EXCEPTION_STACK_OVERFLOW:
diagnostics_dump_generic_exception("Stack Overflow", exception_code, exception_address);
break;
case EXCEPTION_INVALID_DISPOSITION:
diagnostics_dump_generic_exception("Invalid Disposition", exception_code, exception_address);
break;
case EXCEPTION_GUARD_PAGE:
diagnostics_dump_generic_exception("Guard Page Violation", exception_code, exception_address);
break;
case EXCEPTION_INVALID_HANDLE:
diagnostics_dump_generic_exception("Invalid Handle", exception_code, exception_address);
break;
case CONTROL_C_EXIT:
diagnostics_dump_generic_exception("Ctrl+C Exit", exception_code, exception_address);
break;
default:
diagnostics_dump_generic_exception("Unknown exception", exception_code, exception_address);
break;
}
return 0;
}
// Priority is given to the worker threads exception code, and then the
// graphics thread. If neither of those two threw the exception grab
// the exception code of the thread that did.
UINT diagnostics_determine_exit_code() {
UINT uiReturn = 0;
UINT uiIndex = 0;
size_t size = 0;
// Any thread will do at this point
size = diagnostics_threads.size();
for (uiIndex = 0; uiIndex < size; uiIndex++) {
if (diagnostics_threads[uiIndex]->crash_exception_record) {
uiReturn =
diagnostics_threads[uiIndex]->crash_exception_record->ExceptionRecord->ExceptionCode;
}
}
return uiReturn;
}
UINT WINAPI diagnostics_unhandled_exception_monitor(LPVOID /* lpParameter */) {
DWORD dwEvent = (DWORD)NULL;
BOOL bContinue = TRUE;
BOOL bDebuggerInitialized = FALSE;
HANDLE hEvents[2];
unsigned int i;
CONTEXT c;
BOINC_WINDOWCAPTURE window_info;
PBOINC_THREADLISTENTRY pThreadEntry = NULL;
// We should not suspend our crash dump thread.
diagnostics_set_thread_exempt_suspend();
// Aquire the mutex that will keep all the threads that throw an exception
// at bay until we are ready to deal with them.
WaitForSingleObject(hExceptionMonitorHalt, INFINITE);
// Which events do we want to wait for?
hEvents[0] = hExceptionQuitEvent;
hEvents[1] = hExceptionDetectedEvent;
// Notify the initialization thread that initialization is complete and now
// we are waiting for an exception event.
SetEvent(hExceptionMonitorStartedEvent);
while (bContinue) {
dwEvent = WaitForMultipleObjects(
2, // number of objects in array
hEvents, // array of objects
FALSE, // wait for any
INFINITE // wait
);
switch(dwEvent) {
// hExceptionQuitEvent was signaled.
case WAIT_OBJECT_0 + 0:
// We are shutting down so lets cleanup and exit.
bContinue = false;
break;
// hExceptionDetectedEvent was signaled.
case WAIT_OBJECT_0 + 1:
#ifdef _DEBUG
if (diagnostics_is_flag_set(BOINC_DIAG_MEMORYLEAKCHECKENABLED)) {
CLEAR_CRT_DEBUG_FIELD(_CRTDBG_LEAK_CHECK_DF);
}
if (diagnostics_is_flag_set(BOINC_DIAG_HEAPCHECKENABLED)) {
CLEAR_CRT_DEBUG_FIELD(_CRTDBG_CHECK_ALWAYS_DF);
CLEAR_CRT_DEBUG_FIELD(_CRTDBG_CHECK_EVERY_1024_DF);
}
#endif // _DEBUG
// Enumerate through all the threads so we have a complete list of what we need to dump.
diagnostics_update_thread_list();
// Get any data that will be needed later but will cause a deadlock if called after
// the other threads are suspended.
diagnostics_capture_foreground_window(&window_info);
// Wait for the ThreadListSync mutex before writing updates
WaitForSingleObject(hThreadListSync, INFINITE);
// Dump some basic stuff about runtime debugger version and date
diagnostics_unhandled_exception_dump_banner();
#ifndef __CYGWIN__
// Kickstart the debugger extensions, look for the debugger files
// in the install directory if it is defined, otherwise look
// in the data directory.
if (0 != strlen(diagnostics_get_boinc_install_dir())) {
bDebuggerInitialized = !DebuggerInitialize(
diagnostics_get_boinc_install_dir(),
diagnostics_get_symstore(),
diagnostics_is_proxy_enabled(),
diagnostics_get_proxy()
);
} else {
bDebuggerInitialized = !DebuggerInitialize(
diagnostics_get_boinc_dir(),
diagnostics_get_symstore(),
diagnostics_is_proxy_enabled(),
diagnostics_get_proxy()
);
}
// Dump any useful information
if (bDebuggerInitialized) DebuggerDisplayDiagnostics();
#endif
// Dump the process statistics
diagnostics_dump_process_information();
// Dump the other threads stack.
for (i=0; ithread_id && !pThreadEntry->crash_suspend_exempt) {
diagnostics_dump_thread_information(pThreadEntry);
// Dump the exception record
if (pThreadEntry->crash_exception_record) {
diagnostics_dump_exception_record(
pThreadEntry->crash_exception_record
);
}
if (diagnostics_is_flag_set(BOINC_DIAG_DUMPCALLSTACKENABLED)) {
#ifndef __CYGWIN__
if (bDebuggerInitialized) {
if (pThreadEntry->crash_exception_record ) {
StackwalkFilter(
pThreadEntry->crash_exception_record,
EXCEPTION_EXECUTE_HANDLER
);
} else {
// Suspend thread before extracting the contexts,
// otherwise it'll be trash.
SuspendThread(pThreadEntry->thread_handle);
// Get the thread context
memset(&c, 0, sizeof(CONTEXT));
c.ContextFlags = CONTEXT_FULL;
GetThreadContext(pThreadEntry->thread_handle, &c);
StackwalkThread(
pThreadEntry->thread_handle,
&c
);
}
}
#else
fprintf(stderr, "Warning: Callstack dumps are not supported on CYGWIN\n");
#endif
}
fprintf(stderr, "\n");
}
}
diagnostics_message_monitor_dump();
diagnostics_foreground_window_dump(&window_info);
fprintf(stderr, "Exiting...\n");
// Release the Mutex
ReleaseMutex(hThreadListSync);
// Force terminate the app letting BOINC know an exception has occurred.
if (diagnostics_is_aborted_via_gui()) {
TerminateProcess(GetCurrentProcess(), (UINT)ERR_ABORTED_VIA_GUI);
} else {
TerminateProcess(GetCurrentProcess(), diagnostics_determine_exit_code());
}
break;
}
}
// Notify the calling thread that the message monitoring thread is
// finished.
SetEvent(hExceptionQuitFinishedEvent);
return 0;
}
static int no_reset[SIGRTMAX+1];
static int no_ignore[SIGRTMAX+1];
static int setup_arrays=0;
void setup_no_reset() {
no_reset[SIGILL]=1;
#ifdef SIGTRAP
no_reset[SIGTRAP]=1;
#endif
#ifdef SIGPRIV
no_reset[SIGPRIV]=1;
#endif
no_reset[SIGINT]=1;
};
void setup_no_ignore() {
#ifdef SIGKILL
no_ignore[SIGKILL]=1;
#endif
#ifdef SIGSTOP
no_ignore[SIGSTOP]=1;
#endif
no_ignore[SIGSEGV]=1;
};
LONG pass_to_signal_handler(int signum) {
void (*handler)(int);
if (!setup_arrays) {
setup_arrays=1;
setup_no_ignore();
setup_no_reset();
}
// Are we using the default signal handler?
// If so return to the exception handler.
handler=signal(signum,SIG_DFL);
if (handler==SIG_DFL) {
return EXCEPTION_CONTINUE_SEARCH;
}
// Should we ignore this signal?
if (handler==SIG_IGN) {
signal(signum,handler);
// Are we allowed to?
if (!no_ignore[signum]) {
// Yes? Attempt to ignore the exception.
return EXCEPTION_CONTINUE_EXECUTION;
} else {
return EXCEPTION_CONTINUE_SEARCH;
}
}
// Call our signal handler, this probably won't return...
handler(signum);
// if it does, reset the signal handler if appropriate.
if (no_reset[signum]) signal(signum,handler);
// try to continue execution
return EXCEPTION_CONTINUE_EXECUTION;
}
// Allow apps to install signal handlers for some exceptions that bypass
// the boinc diagnostics. This translates the Windows exceptions into
// standard signals.
LONG diagnostics_check_signal_handlers(PEXCEPTION_POINTERS pExPtrs) {
switch (pExPtrs->ExceptionRecord->ExceptionCode) {
case CONTROL_C_EXIT:
return pass_to_signal_handler(SIGINT);
case EXCEPTION_BREAKPOINT:
case EXCEPTION_SINGLE_STEP:
#ifdef SIGTRAP
return pass_to_signal_handler(SIGTRAP);
#else
break;
#endif
case EXCEPTION_FLT_DENORMAL_OPERAND:
case EXCEPTION_FLT_DIVIDE_BY_ZERO:
case EXCEPTION_FLT_INEXACT_RESULT:
case EXCEPTION_FLT_INVALID_OPERATION:
case EXCEPTION_FLT_OVERFLOW:
case EXCEPTION_FLT_UNDERFLOW:
{
LONG rv=pass_to_signal_handler(SIGFPE);
/* MS claims ignoring an FP signal
* results in an unknown FP state.
* Does an _fpreset() help?
*/
if (rv != EXCEPTION_CONTINUE_SEARCH)
_fpreset();
return rv;
}
case EXCEPTION_INT_DIVIDE_BY_ZERO:
case EXCEPTION_INT_OVERFLOW:
return pass_to_signal_handler(SIGFPE);
case EXCEPTION_PRIV_INSTRUCTION:
#ifdef SIGPRIV
return pass_to_signal_handler(SIGPRIV);
// nobreak
#endif
case EXCEPTION_ILLEGAL_INSTRUCTION:
return pass_to_signal_handler(SIGILL);
// nobreak
case EXCEPTION_DATATYPE_MISALIGNMENT:
#ifdef SIGBUS
return pass_to_signal_handler(SIGBUS);
// nobreak
#endif
case EXCEPTION_STACK_OVERFLOW:
case EXCEPTION_ACCESS_VIOLATION:
case EXCEPTION_ARRAY_BOUNDS_EXCEEDED:
case EXCEPTION_IN_PAGE_ERROR:
return pass_to_signal_handler(SIGSEGV);
// nobreak
default: break;
}
return EXCEPTION_CONTINUE_SEARCH;
}
// Let the unhandled exception monitor take care of logging the exception data.
// Store the exception pointers and then singal the exception monitor to start
// partying on the data.
LONG CALLBACK boinc_catch_signal(PEXCEPTION_POINTERS pExPtrs) {
// Check whether somone has installed a standard C signal handler to
// handle this exception.
if (diagnostics_check_signal_handlers(pExPtrs) == EXCEPTION_CONTINUE_EXECUTION) {
return EXCEPTION_CONTINUE_EXECUTION;
}
fprintf( stderr, "\n\n");
fprintf( stderr, "Unhandled Exception Detected...\n\n");
// Dump what we know about...
diagnostics_dump_exception_record(pExPtrs);
if (hExceptionMonitorThread) {
// Engage the BOINC Windows Runtime Debugger and dump as much diagnostic
// data as possible.
//
fprintf( stderr, "Engaging BOINC Windows Runtime Debugger...\n\n");
// Store the exception record pointers.
diagnostics_set_thread_exception_record(pExPtrs);
// Wake the unhandled exception monitor up to process the exception.
SetEvent(hExceptionDetectedEvent);
// Go to sleep waiting for something this thread will never see.
WaitForSingleObject(hExceptionMonitorHalt, INFINITE);
} else {
// This is a really bad place to be. The unhandled exception monitor wasn't
// created, so we need to bail out as quickly as possible.
//
fprintf( stderr, "BOINC Windows Runtime Debugger not configured, terminating application...\n");
// Enter the critical section in case multiple threads decide to try and blow
// chunks at the same time. Let the OS decide who gets to determine what
// error code we return.
EnterCriticalSection(&csExceptionMonitorFallback);
TerminateProcess(GetCurrentProcess(), pExPtrs->ExceptionRecord->ExceptionCode);
LeaveCriticalSection(&csExceptionMonitorFallback);
}
// We won't make it to this point, but make the compiler happy anyway.
return EXCEPTION_CONTINUE_SEARCH;
}
// Starting with Visual Studio 2005 the C Runtime Library has really started to
// enforce parameter validation. Problem is that the parameter validation code
// uses its own structured exception handler and terminates without writing
// any useful output to stderr. Microsoft has created a hook an application
// developer can use to get more debugging information which is the purpose
// of this function. When an invalid parameter is passed to the C Runtime
// library this function will write whatever trace information it can and
// then throw a breakpoint exception to dump all the rest of the useful
// information.
void boinc_catch_signal_invalid_parameter(
const wchar_t* expression, const wchar_t* function, const wchar_t* file, unsigned int line, uintptr_t /* pReserved */
) {
fprintf(
stderr,
"ERROR: Invalid parameter detected in function %s. File: %s Line: %d\n",
function,
file,
line
);
fprintf(
stderr,
"ERROR: Expression: %s\n",
expression
);
// Cause a Debug Breakpoint.
DebugBreak();
}