// This file is part of BOINC.
// http://boinc.berkeley.edu
// Copyright (C) 2008 University of California
//
// BOINC is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License
// as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// BOINC is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with BOINC. If not, see .
// Structures representing coprocessors (e.g. GPUs);
// used in both client and server.
//
// Notes:
//
// 1) The use of "CUDA" is misleading; it really means "NVIDIA GPU".
// 2) The design treats each resource type as a pool of identical devices;
// for example, there is a single "CUDA long-term debt" per project,
// and a scheduler request contains a request (#instances, instance-seconds)
// for CUDA jobs.
// In reality, the instances of a resource type can have different properties:
// In the case of CUDA, "compute capability", driver version, RAM, speed, etc.
// How to resolve this discrepancy?
//
// Prior to 21 Apr 09 we identified the fastest instance
// and pretended that the others were identical to it.
// This approach has a serious flaw:
// suppose that the fastest instance has characteristics
// (version, RAM etc.) that satisfy the project's requirements,
// but other instances to not.
// Then BOINC executes jobs on GPUs that can't handle them,
// the jobs fail, the host is punished, etc.
//
// We could treat each GPU has a separate resource,
// with its own set of debts, backoffs, etc.
// However, this would imply tying jobs to instances,
// which is undesirable from a scheduling viewpoint.
// It would also be a big code change in both client and server.
//
// Instead, (as of 21 Apr 09) our approach is to identify a
// "most capable" instance, which in the case of CUDA is based on
// a) compute capability
// b) driver version
// c) RAM size
// d) est. FLOPS
// (in decreasing priority).
// We ignore and don't use any instances that are less capable
// on any of these axes.
//
// This design avoids running coprocessor apps on instances
// that are incapable of handling them, and it involves no server changes.
// Its drawback is that, on systems with multiple and differing GPUs,
// it may not use some GPUs that actually could be used.
#ifndef _COPROC_
#define _COPROC_
#include
#include
#include
#ifdef _USING_FCGI_
#include "boinc_fcgi.h"
#endif
#include "miofile.h"
#include "parse.h"
#include "cal_boinc.h"
#include "cl_boinc.h"
#define MAX_COPROC_INSTANCES 64
#define MAX_RSC 8
// max # of processing resources types
#define MAX_OPENCL_PLATFORMS 16
#define GPU_TYPE_NVIDIA "NVIDIA"
#define GPU_TYPE_ATI "ATI"
// represents a requirement for a coproc.
// This is a parsed version of the elements in an
// (used in client only)
//
struct COPROC_REQ {
char type[256]; // must be unique
double count;
int parse(XML_PARSER&);
};
// For now, there will be some duplication between the values present in
// the OPENCL_DEVICE_PROP struct and the NVIDA and / or ATI structs
struct OPENCL_DEVICE_PROP {
cl_device_id device_id;
char name[256]; // Device name
char vendor[256]; // Device vendor (NVIDIA, ATI, AMD, etc.)
cl_uint vendor_id; // OpenCL ID of device vendor
cl_bool available; // Is this device available?
cl_device_fp_config hp_fp_config; // Half precision floating point capabilities
cl_device_fp_config sp_fp_config; // Single precision floating point capabilities
cl_device_fp_config dp_fp_config; // Double precision floating point capabilities
cl_bool little_endian; // TRUE if little-endian
cl_device_exec_capabilities exec_capab; // Execution capabilities
char extensions[1024]; // List of device extensions
cl_ulong global_RAM; // Size of global memory
cl_ulong local_RAM; // Size of local memory
cl_uint max_clock_freq; // Max configured clock frequencin in MHz
cl_uint max_cores; // Max number of parallel computer cores
char openCL_platform_version[64]; // Version of OpenCL platform for this device
char openCL_device_version[64]; // OpenCL version supported by device; example: "OpenCL 1.1 beta"
char openCL_driver_version[32]; // For example: "CLH 1.0"
int device_num; // temp used in scan process
};
// represents a set of identical coprocessors on a particular computer.
// Abstract class;
// objects will always be a derived class (COPROC_CUDA, COPROC_ATI)
// Used in both client and server.
//
struct COPROC {
char type[256]; // must be unique
int count; // how many are present
double peak_flops;
double used; // how many are in use (used by client)
bool have_cuda; // True if this GPU supports CUDA on this computer
bool have_cal; // True if this GPU supports CAL on this computer
bool have_opencl; // True if this GPU supports openCL on this computer
// the following are used in both client and server for work-fetch info
//
double req_secs;
// how many instance-seconds of work requested
double req_instances;
// client is requesting enough jobs to use this many instances
double estimated_delay;
// resource will be saturated for this long
// temps used in client (enforce_schedule())
// to keep track of what fraction of each instance is in use
// during instance assignment
//
double usage[MAX_COPROC_INSTANCES];
double pending_usage[MAX_COPROC_INSTANCES];
// the device number of each instance
// These are not sequential if we omit instances (see above)
//
int device_nums[MAX_COPROC_INSTANCES];
int device_num; // temp used in scan process
cl_device_id opencl_device_ids[MAX_COPROC_INSTANCES];
int opencl_device_count;
bool running_graphics_app[MAX_COPROC_INSTANCES];
// is this GPU running a graphics app (NVIDIA only)
double available_ram[MAX_COPROC_INSTANCES];
bool available_ram_unknown[MAX_COPROC_INSTANCES];
// couldn't get available RAM; don't start new apps on this instance
double available_ram_fake[MAX_COPROC_INSTANCES];
double last_print_time;
OPENCL_DEVICE_PROP opencl_prop;
#ifndef _USING_FCGI_
void write_xml(MIOFILE&);
void write_request(MIOFILE&);
int parse(XML_PARSER&);
void opencl_write_xml(MIOFILE&);
#endif
int parse_opencl(XML_PARSER&);
inline void clear() {
// can't just memcpy() - trashes vtable
type[0] = 0;
count = 0;
peak_flops = 0;
used = 0;
have_cuda = false;
have_cal = false;
have_opencl = false;
req_secs = 0;
req_instances = 0;
opencl_device_count = 0;
estimated_delay = 0;
for (int i=0; i= 4GB)
int sharedMemPerBlock;
int regsPerBlock;
int warpSize;
int memPitch;
int maxThreadsPerBlock;
int maxThreadsDim[3];
int maxGridSize[3];
int clockRate;
int totalConstMem;
int major; // compute capability
int minor;
int textureAlignment;
int deviceOverlap;
int multiProcessorCount;
double dtotalGlobalMem; // not defined in client
};
struct COPROC_NVIDIA : public COPROC {
int cuda_version; // CUDA runtime version
int display_driver_version;
CUDA_DEVICE_PROP prop;
#ifndef _USING_FCGI_
void write_xml(MIOFILE&, bool include_request);
#endif
COPROC_NVIDIA(): COPROC(GPU_TYPE_NVIDIA){}
void get(
bool use_all,
std::vector&, std::vector&,
std::vector& ignore_devs
);
void description(char*);
void clear();
int parse(XML_PARSER&);
void get_available_ram();
void set_peak_flops() {
int flops_per_clock=0, cores_per_proc=0;
switch (prop.major) {
case 1:
flops_per_clock = 3;
cores_per_proc = 8;
break;
case 2:
flops_per_clock = 2;
switch (prop.minor) {
case 0:
cores_per_proc = 32;
break;
default:
cores_per_proc = 48;
break;
}
}
// clock rate is scaled down by 1000
//
double x = (1000.*prop.clockRate) * prop.multiProcessorCount * cores_per_proc * flops_per_clock;
peak_flops = (x>0)?x:5e10;
}
bool check_running_graphics_app();
bool matches(OPENCL_DEVICE_PROP& OpenCLprop);
void fake(int driver_version, double ram, int count);
};
struct COPROC_ATI : public COPROC {
char name[256];
char version[50];
int version_num;
// based on CAL version (not driver version)
// encoded as 1000000*major + 1000*minor + release
bool atirt_detected;
bool amdrt_detected;
CALdeviceattribs attribs;
CALdeviceinfo info;
#ifndef _USING_FCGI_
void write_xml(MIOFILE&, bool include_request);
#endif
COPROC_ATI(): COPROC(GPU_TYPE_ATI){}
void get(
bool use_all,
std::vector&, std::vector&,
std::vector& ignore_devs
);
void description(char*);
void clear();
int parse(XML_PARSER&);
void get_available_ram();
bool matches(OPENCL_DEVICE_PROP& OpenCLprop);
void set_peak_flops() {
double x = attribs.numberOfSIMD * attribs.wavefrontSize * 2.5 * attribs.engineClock * 1.e6;
// clock is in MHz
peak_flops = (x>0)?x:5e10;
}
void fake(double, int);
};
struct COPROCS {
int n_rsc;
COPROC coprocs[MAX_RSC];
COPROC_NVIDIA nvidia;
COPROC_ATI ati;
void write_xml(MIOFILE& out, bool include_request);
void get(
bool use_all, std::vector &descs,
std::vector &warnings,
std::vector& ignore_nvidia_dev,
std::vector& ignore_ati_dev
);
void get_opencl(bool use_all, std::vector &warnings,
std::vector& ignore_nvidia_dev,
std::vector& ignore_ati_dev
);
cl_int get_opencl_info(
OPENCL_DEVICE_PROP& prop,
cl_uint device_index,
std::vector &warnings
);
int parse(XML_PARSER&);
void summary_string(char*, int);
// Copy a coproc set, possibly setting usage to zero.
// used in round-robin simulator and CPU scheduler,
// to avoid messing w/ master copy
//
void clone(COPROCS& c, bool copy_used) {
n_rsc = c.n_rsc;
for (int i=0; i 0);
}
inline bool have_ati() {
return (ati.count > 0);
}
int add(COPROC& c) {
coprocs[n_rsc++] = c;
return 0;
}
COPROCS() {
n_rsc = 0;
nvidia.count = 0;
ati.count = 0;
COPROC c;
strcpy(c.type, "CPU");
add(c);
}
};
#endif