// Berkeley Open Infrastructure for Network Computing // http://boinc.berkeley.edu // Copyright (C) 2005 University of California // // This is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; // either version 2.1 of the License, or (at your option) any later version. // // This software is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. // See the GNU Lesser General Public License for more details. // // To view the GNU Lesser General Public License visit // http://www.gnu.org/copyleft/lesser.html // or write to the Free Software Foundation, Inc., // 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA #ifdef _WIN32 #include "boinc_win.h" #define M_LN2 0.693147180559945309417 #endif #ifndef _WIN32 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef HAVE_SYS_FILE_H #include #endif #endif #include "error_numbers.h" #include "filesys.h" #include "util.h" #ifdef _USING_FCGI_ #include "fcgi_stdio.h" #endif using std::min; using std::string; #if !defined(HAVE_STRLCPY) size_t strlcpy(char *dst, const char *src, size_t size) { size_t ret = strlen(src); if (size) { size_t len = (ret >= size) ? size-1 : ret; memcpy(dst, src, len); dst[len] = '\0'; } return ret; } #endif #if !defined(HAVE_STRLCAT) size_t strlcat(char *dst, const char *src, size_t size) { size_t dst_len = strlen(dst); size_t src_len = strlen(src); if (size) { size_t len = (src_len >= size-dst_len) ? (size-dst_len-1) : src_len; memcpy(&dst[dst_len], src, len); dst[dst_len + len] = '\0'; } return dst_len + src_len; } #endif // !HAVE_STRLCAT // Converts a double precision time (where the value of 1 represents // a day) into a string. smallest_timescale determines the smallest // unit of time division used // smallest_timescale: 0=seconds, 1=minutes, 2=hours, 3=days, 4=years // int ndays_to_string (double x, int smallest_timescale, char *buf) { double years, days, hours, minutes, seconds; char year_buf[64], day_buf[16], hour_buf[16], min_buf[16], sec_buf[16]; if (x < 0 || buf == NULL) return ERR_NULL; years = x / 365.25; days = fmod(x, 365.25); hours = fmod(x*24, 24); minutes = fmod(x*24*60, 60); seconds = fmod(x*24*60*60, 60); if (smallest_timescale==4) { sprintf( year_buf, "%.3f yr ", years ); } else if (years > 1 && smallest_timescale < 4) { sprintf( year_buf, "%d yr ", (int)years ); } else { strcpy( year_buf, "" ); } if (smallest_timescale==3) { sprintf( day_buf, "%.2f day%s ", days, (days>1?"s":"") ); } else if (days > 1 && smallest_timescale < 3) { sprintf( day_buf, "%d day%s ", (int)days, (days>1?"s":"") ); } else { strcpy( day_buf, "" ); } if (smallest_timescale==2) { sprintf( hour_buf, "%.2f hr ", hours ); } else if (hours > 1 && smallest_timescale < 2) { sprintf( hour_buf, "%d hr ", (int)hours ); } else { strcpy( hour_buf, "" ); } if (smallest_timescale==1) { sprintf( min_buf, "%.2f min ", minutes ); } else if (minutes > 1 && smallest_timescale < 1) { sprintf( min_buf, "%d min ", (int)minutes ); } else { strcpy( min_buf, "" ); } if (smallest_timescale==0) { sprintf( sec_buf, "%.2f sec ", seconds ); } else if (seconds > 1 && smallest_timescale < 0) { sprintf( sec_buf, "%d sec ", (int)seconds ); } else { strcpy( sec_buf, "" ); } // the "-0.05" below is to prevent it from printing 60.0 sec // when the real value is e.g. 59.91 // sprintf(buf, "%s%s%s%s%s", year_buf, day_buf, hour_buf, min_buf, sec_buf); return 0; } // Convert nbytes into a string. If total_bytes is non-zero, // convert the two into a fractional display (i.e. 4/16 KB) // void nbytes_to_string(double nbytes, double total_bytes, char* str, int len) { char buf[256]; double xTera = (1024.0*1024.0*1024.0*1024.0); double xGiga = (1024.0*1024.0*1024.0); double xMega = (1024.0*1024.0); double xKilo = (1024.0); if (total_bytes != 0) { if (total_bytes >= xTera) { sprintf(buf, "%0.2f/%0.2f TB", nbytes/xTera, total_bytes/xTera); } else if (total_bytes >= xGiga) { sprintf(buf, "%0.2f/%0.2f GB", nbytes/xGiga, total_bytes/xGiga); } else if (total_bytes >= xMega) { sprintf(buf, "%0.2f/%0.2f MB", nbytes/xMega, total_bytes/xMega); } else if (total_bytes >= xKilo) { sprintf(buf, "%0.2f/%0.2f KB", nbytes/xKilo, total_bytes/xKilo); } else { sprintf(buf, "%0.0f/%0.0f bytes", nbytes, total_bytes); } } else { if (nbytes >= xTera) { sprintf(buf, "%0.2f TB", nbytes/xTera); } else if (nbytes >= xGiga) { sprintf(buf, "%0.2f GB", nbytes/xGiga); } else if (nbytes >= xMega) { sprintf(buf, "%0.2f MB", nbytes/xMega); } else if (nbytes >= xKilo) { sprintf(buf, "%0.2f KB", nbytes/xKilo); } else { sprintf(buf, "%0.0f bytes", nbytes); } } safe_strncpy(str, buf, len); } #define EPOCHFILETIME_SEC (11644473600.) #define TEN_MILLION 10000000. // return time of day (seconds since 1970) as a double // double dtime() { #ifdef _WIN32 LARGE_INTEGER time; FILETIME sysTime; double t; GetSystemTimeAsFileTime(&sysTime); time.LowPart = sysTime.dwLowDateTime; time.HighPart = sysTime.dwHighDateTime; // Time is in 100 ns units t = (double)time.QuadPart; // Convert to 1 s units t /= TEN_MILLION; /* In seconds */ t -= EPOCHFILETIME_SEC; /* Offset to the Epoch time */ return t; #else struct timeval tv; gettimeofday(&tv, 0); return tv.tv_sec + (tv.tv_usec/1.e6); #endif } // return time today 0:00 in seconds since 1970 as a double // double dday() { const double seconds_per_day=24*60*60; const double now=dtime(); return (now-fmod(now,seconds_per_day)); } // do sanity check on a time, replace with now if bad // We switched to using all UNIX times on 12/1/04. // During the transition, times in client_state.xml may be // in Windows (1601-based) format. Fix them here. // void validate_time(double& t) { if (t==0) return; double now = dtime(); if (t > now+86400*1000) { t -= EPOCHFILETIME_SEC; } } // sleep for a specified number of seconds // void boinc_sleep(double seconds) { #ifdef _WIN32 ::Sleep((int)(1000*seconds)); #else unsigned int rem = (int) seconds; while (1) { rem = sleep(rem); if (rem == 0) break; if (rem > seconds) break; // paranoia } int x = (int)fmod(seconds*1000000,1000000); if (x) usleep(x); #endif } // take a string containing some space separated words. // return an array of pointers to the null-terminated words. // Modifies the string arg. // Returns argc // TODO: use strtok here #define NOT_IN_TOKEN 0 #define IN_SINGLE_QUOTED_TOKEN 1 #define IN_DOUBLE_QUOTED_TOKEN 2 #define IN_UNQUOTED_TOKEN 3 int parse_command_line(char* p, char** argv) { int state = NOT_IN_TOKEN; int argc=0; while (*p) { switch(state) { case NOT_IN_TOKEN: if (isspace(*p)) { } else if (*p == '\'') { p++; argv[argc++] = p; state = IN_SINGLE_QUOTED_TOKEN; break; } else if (*p == '\"') { p++; argv[argc++] = p; state = IN_DOUBLE_QUOTED_TOKEN; break; } else { argv[argc++] = p; state = IN_UNQUOTED_TOKEN; } break; case IN_SINGLE_QUOTED_TOKEN: if (*p == '\'') { *p = 0; state = NOT_IN_TOKEN; } break; case IN_DOUBLE_QUOTED_TOKEN: if (*p == '\"') { *p = 0; state = NOT_IN_TOKEN; } break; case IN_UNQUOTED_TOKEN: if (isspace(*p)) { *p = 0; state = NOT_IN_TOKEN; } break; } p++; } argv[argc] = 0; return argc; } static char x2c(char *what) { register char digit; digit = (what[0] >= 'A' ? ((what[0] & 0xdf) - 'A')+10 : (what[0] - '0')); digit *= 16; digit += (what[1] >= 'A' ? ((what[1] & 0xdf) - 'A')+10 : (what[1] - '0')); return(digit); } void c2x(char *what) { char buf[3]; char num = atoi(what); char d1 = num / 16; char d2 = num % 16; int abase1, abase2; if (d1 < 10) abase1 = 48; else abase1 = 55; if (d2 < 10) abase2 = 48; else abase2 = 55; buf[0] = d1+abase1; buf[1] = d2+abase2; buf[2] = 0; strcpy(what, buf); } // remove whitespace from start and end of a string // void strip_whitespace(char *str) { int n; while (1) { if (!str[0]) break; if (!isascii(str[0])) break; if (!isspace(str[0])) break; strcpy(str, str+1); } while (1) { n = (int)strlen(str); if (n == 0) break; if (!isascii(str[n-1])) break; if (!isspace(str[n-1])) break; str[n-1] = 0; } } void strip_whitespace(string& str) { int n; while (1) { if (str.length() == 0) break; if (!isascii(str[0])) break; if (!isspace(str[0])) break; str.erase(0, 1); } while (1) { n = (int)str.length(); if (n == 0) break; if (!isascii(str[n-1])) break; if (!isspace(str[n-1])) break; str.erase(n-1, 1); } } bool starts_with(const char* str, const char* prefix) { if (strstr(str, prefix) == str) return true; return false; } bool ends_with(const char* str, const char* suffix) { size_t nsuff = strlen(suffix); size_t nstr = strlen(str); if (nsuff > nstr) return false; if (strcmp(str+nstr-nsuff, suffix)) return false; return true; } void unescape_url(char *url) { int x,y; for (x=0,y=0;url[y];++x,++y) { if ((url[x] = url[y]) == '%') { url[x] = x2c(&url[y+1]); y+=2; } } url[x] = '\0'; } void escape_url(char *in, char*out) { int x, y; for (x=0, y=0; in[x]; ++x) { if (isalnum(in[x])) { out[y] = in[x]; ++y; } else { out[y] = '%'; ++y; out[y] = 0; char buf[256]; sprintf(buf, "%d", (char)in[x]); c2x(buf); strcat(out, buf); y += 2; } } out[y] = 0; } // Escape a URL for the project directory, cutting off the "http://", // converting '\' '/' and ' ' to '_', // and converting the non alphanumeric characters to %XY // where XY is their hexadecimal equivalent // void escape_url_readable(char *in, char* out) { int x, y; char *temp; temp = strstr(in,"://"); if (temp) { in = temp + strlen("://"); } for (x=0, y=0; in[x]; ++x) { if (isalnum(in[x]) || in[x]=='.' || in[x]=='-' || in[x]=='_') { out[y] = in[x]; ++y; } else { out[y] = '_'; ++y; } } out[y] = 0; } // Canonicalize a master url. // - Convert the first part of a URL (before the "://") to http://, // or prepend it // - Remove double slashes in the rest // - Add a trailing slash if necessary // void canonicalize_master_url(char* url) { char buf[1024]; size_t n; char *p = strstr(url, "://"); if (p) { strcpy(buf, p+3); } else { strcpy(buf, url); } while (1) { p = strstr(buf, "//"); if (!p) break; strcpy(p, p+1); } n = strlen(buf); if (buf[n-1] != '/') { strcat(buf, "/"); } sprintf(url, "http://%s", buf); } // is the string a valid master URL, in canonical form? // bool valid_master_url(char* buf) { char* p, *q; size_t n; p = strstr(buf, "http://"); if (p != buf) return false; q = p+strlen("http://"); p = strstr(q, "."); if (!p) return false; if (p == q) return false; q = p+1; p = strstr(q, "/"); if (!p) return false; if (p == q) return false; n = strlen(buf); if (buf[n-1] != '/') return false; return true; } void safe_strncpy(char* dst, const char* src, int len) { strncpy(dst, src, len); dst[len-1]=0; } char* time_to_string(double t) { static char buf[100]; time_t x = (time_t)t; struct tm* tm = localtime(&x); strftime(buf, sizeof(buf)-1, "%Y-%m-%d %H:%M:%S", tm); return buf; } // set by command line bool debug_fake_exponential_backoff = false; double debug_total_exponential_backoff = 0; static int count_debug_fake_exponential_backoff = 0; static const int max_debug_fake_exponential_backoff = 1000; // safety limit // return a random double in the range [MIN,min(e^n,MAX)) double calculate_exponential_backoff( const char* debug_descr, int n, double MIN, double MAX, double factor /* = 1.0 */ ) { double rmax = min(MAX, factor*exp((double)n)); if (debug_fake_exponential_backoff) { // For debugging/testing purposes, fake exponential back-off by // returning 0 seconds; report arguments so we can tell what we would // have done (this doesn't test the rand_range() functions but is // very useful for testing backoff/retry policies). // double expected_backoff = (MIN > rmax) ? MIN : (rmax-MIN)/2.0; debug_total_exponential_backoff += expected_backoff; ++count_debug_fake_exponential_backoff; fprintf( stderr, "## calculate_exponential_backoff(): #%5d descr=\"%s\", n=%d, MIN=%.1f, MAX=%.1f, factor=%.1f; rand_range [%.1f,%.1f); total expected backoff=%.1f\n", count_debug_fake_exponential_backoff, debug_descr, n, MIN, MAX, factor, MIN, rmax, debug_total_exponential_backoff ); if (count_debug_fake_exponential_backoff >= max_debug_fake_exponential_backoff) { fprintf( stderr, "## calculate_exponential_backoff(): reached max_debug_fake_exponential_backoff\n" ); exit(1); } return 0; } return rand_range(MIN, rmax); } string timediff_format(double diff) { char buf[256]; int tdiff = (int)diff; int sex = tdiff % 60; tdiff /= 60; if (!tdiff) { sprintf(buf, "%d seconds", sex); return buf; } int min = tdiff % 60; tdiff /= 60; if (!tdiff) { sprintf(buf, "%d minutes and %d seconds", min, sex); return buf; } int hours = tdiff % 24; tdiff /= 24; if (!tdiff) { sprintf(buf, "%d hours, %d minutes, and %d seconds", hours, min, sex); return buf; } int days = tdiff % 7; tdiff /= 7; if (!tdiff) { sprintf(buf, "%d days, %d hours, %d minutes, and %d seconds", days, hours, min, sex); return buf; } sprintf(buf, "%d weeks, %d days, %d hours, %d minutes, and %d seconds", (int)tdiff, days, hours, min, sex); return buf; } // read entire file into string int read_file_string(const char* pathname, string& result) { result.erase(); FILE* f; char buf[256]; f = fopen(pathname, "r"); if (!f) return ERR_FOPEN; while (fgets(buf, 256, f)) result += buf; fclose(f); return 0; } #ifdef WIN32 // // FUNCTION: windows_error_string // // PURPOSE: copies error message text to string // // PARAMETERS: // pszBuf - destination buffer // iSize - size of buffer // // RETURN VALUE: // destination buffer // // COMMENTS: // char* windows_error_string( char* pszBuf, int iSize ) { DWORD dwRet; LPTSTR lpszTemp = NULL; dwRet = FormatMessage( FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_ARGUMENT_ARRAY, NULL, GetLastError(), LANG_NEUTRAL, (LPTSTR)&lpszTemp, 0, NULL ); // supplied buffer is not long enough if ( !dwRet || ( (long)iSize < (long)dwRet+14 ) ) { pszBuf[0] = TEXT('\0'); } else { lpszTemp[lstrlen(lpszTemp)-2] = TEXT('\0'); //remove cr and newline character sprintf( pszBuf, TEXT("%s (0x%x)"), lpszTemp, GetLastError() ); } if ( lpszTemp ) { LocalFree((HLOCAL) lpszTemp ); } return pszBuf; } // // FUNCTION: windows_format_error_string // // PURPOSE: copies error message text to string // // PARAMETERS: // dwError - the error value to look up // pszBuf - destination buffer // iSize - size of buffer // // RETURN VALUE: // destination buffer // // COMMENTS: // char* windows_format_error_string( unsigned long dwError, char* pszBuf, int iSize ) { DWORD dwRet; LPTSTR lpszTemp = NULL; dwRet = FormatMessage( FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_ARGUMENT_ARRAY, NULL, dwError, LANG_NEUTRAL, (LPTSTR)&lpszTemp, 0, NULL ); // supplied buffer is not long enough if ( !dwRet || ( (long)iSize < (long)dwRet+14 ) ) { pszBuf[0] = TEXT('\0'); } else { lpszTemp[lstrlen(lpszTemp)-2] = TEXT('\0'); //remove cr and newline character sprintf( pszBuf, TEXT("%s (0x%x)"), lpszTemp, dwError ); } if ( lpszTemp ) { LocalFree((HLOCAL) lpszTemp ); } return pszBuf; } int boinc_thread_cpu_time(HANDLE thread_handle, double& cpu) { FILETIME creationTime, exitTime, kernelTime, userTime; if (GetThreadTimes( thread_handle, &creationTime, &exitTime, &kernelTime, &userTime) ) { ULARGE_INTEGER tKernel, tUser; LONGLONG totTime; tKernel.LowPart = kernelTime.dwLowDateTime; tKernel.HighPart = kernelTime.dwHighDateTime; tUser.LowPart = userTime.dwLowDateTime; tUser.HighPart = userTime.dwHighDateTime; totTime = tKernel.QuadPart + tUser.QuadPart; // Runtimes in 100-nanosecond units cpu = totTime / 1.e7; } else { return -1; } return 0; } static void get_elapsed_time(double& cpu) { static bool first = true; static DWORD first_count = 0; if (first) { first_count = GetTickCount(); first = false; } // TODO: Handle timer wraparound DWORD cur = GetTickCount(); cpu = ((cur - first_count)/1000.); } int boinc_calling_thread_cpu_time(double& cpu) { if (boinc_thread_cpu_time(GetCurrentThread(), cpu)) { get_elapsed_time(cpu); } return 0; } #else // Unix: pthreads doesn't seem to provide an API for getting // per-thread CPU time. So just get the process's CPU time // int boinc_calling_thread_cpu_time(double &cpu_t) { int retval; struct rusage ru; retval = getrusage(RUSAGE_SELF, &ru); if (retval) { return ERR_GETRUSAGE; } // Sum the user and system time // cpu_t = (double)ru.ru_utime.tv_sec + (((double)ru.ru_utime.tv_usec) / ((double)1000000.0)); cpu_t += (double)ru.ru_stime.tv_sec + (((double)ru.ru_stime.tv_usec) / ((double)1000000.0)); return 0; } #endif // Update an estimate of "units per day" of something (credit or CPU time). // The estimate is exponentially averaged with a given half-life // (i.e. if no new work is done, the average will decline by 50% in this time). // This function can be called either with new work, // or with zero work to decay an existing average. // // NOTE: if you change this, also change update_average in // html/inc/credit.inc // // David, the quick fix I have done is minimalist. Consider the limit // as diff->0, using the first-order Taylor expansion of // exp(x)=1+x+O(x^2). // So to the lowest order in diff: // weight = 1 - diff ln(2) / half_life // so one has // avg += (1-weight)*(work/diff_days) // avg += [diff*ln(2)/half_life] * (work*SECONDS_PER_DAY/diff) // notice that diff cancels out, leaving // avg += [ln(2)/half_life] * work*SECONDS_PER_DAY void update_average( double work_start_time, // when new work was started // (or zero if no new work) double work, // amount of new work double half_life, double& avg, // average work per day (in and out) double& avg_time // when average was last computed ) { double now = dtime(); if (avg_time) { double diff, diff_days, weight; diff = now - avg_time; if (diff<0) diff=0; diff_days = diff/SECONDS_PER_DAY; weight = exp(-diff*M_LN2/half_life); avg *= weight; if ((1.0-weight) > 1.e-6) { avg += (1-weight)*(work/diff_days); } else { avg += M_LN2*work*SECONDS_PER_DAY/half_life; } } else if (work) { double dd = (now - work_start_time)/SECONDS_PER_DAY; avg = work/dd; } avg_time = now; } void mysql_timestamp(double dt, char* p) { struct tm* tmp; time_t t = (time_t)dt; tmp = localtime(&t); // MySQL timestamps are in local time sprintf(p, "%4d%02d%02d%02d%02d%02d", tmp->tm_year+1900, tmp->tm_mon+1, tmp->tm_mday, tmp->tm_hour, tmp->tm_min, tmp->tm_sec ); } // Return a text-string description of a given error. Must be kept // consistent with error_numbers.h // const char* boincerror(int which_error) { switch (which_error) { case BOINC_SUCCESS: return "Success"; case ERR_SELECT: return "system select"; case ERR_MALLOC: return "system malloc"; case ERR_READ: return "system read"; case ERR_WRITE: return "system write"; case ERR_FREAD: return "system fread"; case ERR_FWRITE: return "system fwrite"; case ERR_IO: return "system I/O"; case ERR_CONNECT: return "system connect"; case ERR_FOPEN: return "system fopen"; case ERR_RENAME: return "system rename"; case ERR_UNLINK: return "system unlink"; case ERR_OPENDIR: return "system opendir"; case ERR_XML_PARSE: return "unexpected XML tag or syntax"; case ERR_GETHOSTBYNAME: return "can't resolve hostname"; case ERR_GIVEUP_DOWNLOAD: return "timeout on download"; case ERR_GIVEUP_UPLOAD: return "timeout on upload"; case ERR_NULL: return "null pointer"; case ERR_NEG: return "unexpected negative value"; case ERR_BUFFER_OVERFLOW: return "buffer overflow"; case ERR_MD5_FAILED: return "md5 checksum failed for file"; case ERR_RSA_FAILED: return "RSA key check failed for file"; case ERR_OPEN: return "system open"; case ERR_DUP2: return "system dup"; case ERR_NO_SIGNATURE: return "no signature"; case ERR_THREAD: return "creating a thread"; case ERR_SIGNAL_CATCH: return "caught signal"; case ERR_UPLOAD_TRANSIENT: return "transient upload error"; case ERR_UPLOAD_PERMANENT: return "fatal upload error"; case ERR_IDLE_PERIOD: return "user preferences say can't start work"; case ERR_ALREADY_ATTACHED: return "already attached to project"; case ERR_FILE_TOO_BIG: return "file size too big"; case ERR_GETRUSAGE: return "system getrusage"; case ERR_BENCHMARK_FAILED: return "benchmark failed"; case ERR_BAD_HEX_FORMAT: return "hex format key data bad"; case ERR_USER_REJECTED: return "user rejected executable file"; case ERR_DB_NOT_FOUND: return "no database rows found in lookup/enumerate"; case ERR_DB_NOT_UNIQUE: return "database lookup not unique"; case ERR_DB_CANT_CONNECT: return "can't connect to datbase"; case ERR_GETS: return "system gets/fgets"; case ERR_SCANF: return "system scanf/fscanf"; case ERR_STRCHR: return "system strchr"; case ERR_STRSTR: return "system strstr"; case ERR_READDIR: return "system readdir"; case ERR_SHMGET: return "system shmget"; case ERR_SHMCTL: return "system shmctl"; case ERR_SHMAT: return "system shmat"; case ERR_FORK: return "system fork"; case ERR_EXEC: return "system exec"; case ERR_NOT_EXITED: return "process didn't exit"; case ERR_NOT_IMPLEMENTED: return "system call not implemented"; case ERR_GETHOSTNAME: return "system gethostname"; case ERR_NETOPEN: return "system netopen"; case ERR_SOCKET: return "system socket"; case ERR_FCNTL: return "system fcntl"; case ERR_AUTHENTICATOR: return "authentication error"; case ERR_SCHED_SHMEM: return "scheduler shared memory contents bad"; case ERR_ASYNCSELECT: return "system async select"; case ERR_BAD_RESULT_STATE: return "bad result state"; case ERR_DB_CANT_INIT: return "can't init database"; case ERR_NOT_UNIQUE: return "state files have redundant entries"; case ERR_NOT_FOUND: return "not found"; case ERR_NO_EXIT_STATUS: return "no exit status in scheduler request"; case ERR_FILE_MISSING: return "file missing"; case ERR_NESTED_UNHANDLED_EXCEPTION_DETECTED: return "nested unhandled exception"; case ERR_SEMGET: return "system get semaphore"; case ERR_SEMCTL: return "system control semaphore"; case ERR_SEMOP: return "system op semaphore"; case ERR_FTOK: return "system ftok"; case ERR_SOCKS_UNKNOWN_FAILURE: return "socket unknown"; case ERR_SOCKS_REQUEST_FAILED: return "socket request"; case ERR_SOCKS_BAD_USER_PASS: return "socket bad user password"; case ERR_SOCKS_UNKNOWN_SERVER_VERSION: return "socket unknown server version"; case ERR_SOCKS_UNSUPPORTED: return "socket unsupported"; case ERR_SOCKS_CANT_REACH_HOST: return "socket can't reach host"; case ERR_SOCKS_CONN_REFUSED: return "socket connection refused"; case ERR_TIMER_INIT: return "timer init"; case ERR_RSC_LIMIT_EXCEEDED: return "resource limit exceeded"; case ERR_INVALID_PARAM: return "invalid parameter"; case ERR_SIGNAL_OP: return "signal op"; case ERR_BIND: return "system bind"; case ERR_LISTEN: return "system listen"; case ERR_TIMEOUT: return "timeout"; case ERR_PROJECT_DOWN: return "project down"; case ERR_HTTP_ERROR: return "http error"; case ERR_RESULT_START: return "result start"; case ERR_RESULT_DOWNLOAD: return "result download"; case ERR_RESULT_UPLOAD: return "result upload"; case ERR_INVALID_URL: return "invalid URL"; case ERR_MAJOR_VERSION: return "major version"; case ERR_NO_OPTION: return "no option"; case ERR_MKDIR: return "mkdir"; case ERR_INVALID_EVENT: return "invalid event"; case ERR_ALREADY_RUNNING: return "already running"; case ERR_NO_APP_VERSION: return "no app version"; case ERR_WU_USER_RULE: return "user already did result for this workunit"; case ERR_ABORTED_VIA_GUI: return "result aborted via GUI"; case ERR_INSUFFICIENT_RESOURCE: return "insufficient resources"; case ERR_RETRY: return "retry"; case ERR_WRONG_SIZE: return "wrong size"; case ERR_USER_PERMISSION: return "user permission"; } return "UNRECOGNIZED: make lib/util.C consistent with lib/error_numbers.h"; } const char *BOINC_RCSID_ab65c90e1e = "$Id$";