// This file is part of BOINC.
// http://boinc.berkeley.edu
// Copyright (C) 2008 University of California
//
// BOINC is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License
// as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// BOINC is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with BOINC. If not, see .
#include "client_types.h"
#include "client_msgs.h"
#ifdef SIM
#include "sim.h"
#else
#include "client_state.h"
#endif
#include "work_fetch.h"
using std::vector;
RSC_WORK_FETCH cuda_work_fetch;
RSC_WORK_FETCH cpu_work_fetch;
WORK_FETCH work_fetch;
#define MIN_BACKOFF_INTERVAL 60
#define MAX_BACKOFF_INTERVAL 86400
// if we ask a project for work for a resource and don't get it,
// we do exponential backoff.
// This constant is an upper bound for this.
// E.g., if we need GPU work, we'll end up asking once a day,
// so if the project develops a GPU app,
// we'll find out about it within a day.
static inline char* rsc_name(int t) {
switch (t) {
case RSC_TYPE_CPU: return "CPU";
case RSC_TYPE_CUDA: return "CUDA";
}
return "Unknown";
}
RSC_PROJECT_WORK_FETCH& RSC_WORK_FETCH::project_state(PROJECT* p) {
switch(rsc_type) {
case RSC_TYPE_CUDA: return p->cuda_pwf;
default: return p->cpu_pwf;
}
}
bool RSC_WORK_FETCH::may_have_work(PROJECT* p) {
RSC_PROJECT_WORK_FETCH& w = project_state(p);
return (w.backoff_time < gstate.now);
}
bool RSC_PROJECT_WORK_FETCH::compute_may_have_work() {
return (backoff_time < gstate.now);
}
void RSC_PROJECT_WORK_FETCH::rr_init() {
may_have_work = compute_may_have_work();
runnable_share = 0;
fetchable_share = 0;
has_runnable_jobs = false;
sim_nused = 0;
}
void RSC_WORK_FETCH::rr_init() {
shortfall = 0;
nidle_now = 0;
sim_nused = 0;
total_fetchable_share = 0;
total_runnable_share = 0;
estimated_delay = 0;
pending.clear();
}
void WORK_FETCH::rr_init() {
cpu_work_fetch.rr_init();
if (coproc_cuda) {
cuda_work_fetch.rr_init();
}
for (unsigned int i=0; ipwf.can_fetch_work = p->pwf.compute_can_fetch_work(p);
p->cpu_pwf.rr_init();
if (coproc_cuda) {
p->cuda_pwf.rr_init();
}
}
}
bool PROJECT_WORK_FETCH::compute_can_fetch_work(PROJECT* p) {
if (p->non_cpu_intensive) return false;
if (p->suspended_via_gui) return false;
if (p->master_url_fetch_pending) return false;
if (p->min_rpc_time > gstate.now) return false;
if (p->dont_request_more_work) return false;
if (p->some_download_stalled()) return false;
if (p->some_result_suspended()) return false;
if (p->nuploading_results > 2*gstate.ncpus) return false;
return true;
}
void PROJECT_WORK_FETCH::reset(PROJECT* p) {
p->cpu_pwf.reset();
p->cuda_pwf.reset();
}
void RSC_WORK_FETCH::accumulate_shortfall(double d_time) {
double idle = ninstances - sim_nused;
if (idle > 0) {
shortfall += idle*d_time;
}
}
// "estimated delay" is the interval for which we expect the
// resource to be saturated.
//
void RSC_WORK_FETCH::update_estimated_delay(double dt) {
if (sim_nused >= ninstances) {
estimated_delay = dt;
}
}
// see if the project's debt is beyond what would normally happen;
// if so we conclude that it had a long job that ran in EDF mode;
// avoid asking it for work unless absolutely necessary.
//
bool RSC_PROJECT_WORK_FETCH::overworked() {
double x = gstate.work_buf_total() + gstate.global_prefs.cpu_scheduling_period();
if (x < 86400) x = 86400;
return (debt < -x);
}
// Choose the best project to ask for work for this resource,
// given some constraints.
//
PROJECT* RSC_WORK_FETCH::choose_project(
bool allow_overworked, // consider overworked projects
bool only_starved // consider only starved projects
) {
PROJECT* pbest = NULL;
for (unsigned i=0; ipwf.can_fetch_work) continue;
if (!project_state(p).may_have_work) continue;
RSC_PROJECT_WORK_FETCH& rpwf = project_state(p);
if (!allow_overworked && rpwf.overworked()) {
continue;
}
if (only_starved && rpwf.has_runnable_jobs) {
continue;
}
if (pbest) {
if (pbest->pwf.overall_debt > p->pwf.overall_debt) {
continue;
}
}
pbest = p;
}
return pbest;
}
void WORK_FETCH::set_overall_debts() {
for (unsigned i=0; ipwf.overall_debt = p->cpu_pwf.debt;
if (coproc_cuda) {
p->pwf.overall_debt += cuda_work_fetch.speed*p->cuda_pwf.debt;
}
}
}
void RSC_WORK_FETCH::print_state(char* name) {
msg_printf(0, MSG_INFO,
"[wfd] %s: shortfall %.2f nidle %.2f est. delay %.2f RS fetchable %.2f runnable %.2f",
name,
shortfall, nidle_now, estimated_delay,
total_fetchable_share, total_runnable_share
);
for (unsigned int i=0; inon_cpu_intensive) continue;
RSC_PROJECT_WORK_FETCH& pwf = project_state(p);
double bt = pwf.backoff_time>gstate.now?pwf.backoff_time-gstate.now:0;
msg_printf(p, MSG_INFO,
"[wfd] %s: runshare %.2f debt %.2f backoff dt %.2f int %.2f%s%s%s%s%s",
name,
pwf.runnable_share, pwf.debt, bt, pwf.backoff_interval,
p->suspended_via_gui?" (susp via GUI)":"",
p->master_url_fetch_pending?" (master fetch pending)":"",
p->min_rpc_time > gstate.now?" (comm deferred)":"",
p->dont_request_more_work?" (no new tasks)":"",
pwf.overworked()?" (overworked)":""
);
}
}
void WORK_FETCH::print_state() {
msg_printf(0, MSG_INFO, "[wfd] ------- start work fetch state -------");
msg_printf(0, MSG_INFO, "[wfd] target work buffer: %.2f sec",
gstate.work_buf_total()
);
cpu_work_fetch.print_state("CPU");
if (coproc_cuda) {
cuda_work_fetch.print_state("CUDA");
}
for (unsigned int i=0; inon_cpu_intensive) continue;
msg_printf(p, MSG_INFO, "[wfd] overall_debt %.0f", p->pwf.overall_debt);
}
msg_printf(0, MSG_INFO, "[wfd] ------- end work fetch state -------");
}
static void print_req(PROJECT* p) {
msg_printf(p, MSG_INFO,
"[wfd] request: CPU (%.2f sec, %d) CUDA (%.2f sec, %d)",
cpu_work_fetch.req_secs, cpu_work_fetch.req_instances,
cuda_work_fetch.req_secs, cuda_work_fetch.req_instances
);
}
void RSC_WORK_FETCH::clear_request() {
req_secs = 0;
req_instances = 0;
}
void WORK_FETCH::clear_request() {
cpu_work_fetch.clear_request();
cuda_work_fetch.clear_request();
}
// does the project have a downloading or runnable job?
//
static bool has_a_job(PROJECT* p) {
for (unsigned int j=0; jproject != p) continue;
if (rp->state() <= RESULT_FILES_DOWNLOADED) {
return true;
}
}
return false;
}
// we're going to contact this project reasons other than work fetch;
// decide if we should piggy-back a work fetch request.
//
void WORK_FETCH::compute_work_request(PROJECT* p) {
clear_request();
if (p->dont_request_more_work) return;
if (p->non_cpu_intensive) {
if (!has_a_job(p)) {
cpu_work_fetch.req_secs = 1;
}
return;
}
// see if this is the project we'd ask for work anyway
//
PROJECT* pbest = choose_project();
if (p == pbest) return;
// if not, don't request any work
//
clear_request();
}
// see if there's a fetchable non-CPU-intensive project without work
//
PROJECT* WORK_FETCH::non_cpu_intensive_project_needing_work() {
for (unsigned int i=0; inon_cpu_intensive) continue;
if (!p->can_request_work()) continue;
if (p->cpu_pwf.backoff_time > gstate.now) continue;
if (has_a_job(p)) continue;
clear_request();
cpu_work_fetch.req_secs = 1;
return p;
}
return 0;
}
// choose a project to fetch work from,
// and set the request fields of resource objects
//
PROJECT* WORK_FETCH::choose_project() {
PROJECT* p = 0;
p = non_cpu_intensive_project_needing_work();
if (p) return p;
gstate.compute_nuploading_results();
gstate.rr_simulation();
set_overall_debts();
bool cpu_emergency = false;
bool cuda_emergency = false;
// If a resource is idle, it's an "emergency";
// get work for it from the project with greatest LTD,
// even if it's overworked.
// Give GPU priority over CPU
//
if (coproc_cuda && cuda_work_fetch.nidle_now) {
p = cuda_work_fetch.choose_project(true, false);
if (p) {
cuda_emergency = true;
if (log_flags.work_fetch_debug) {
msg_printf(p, MSG_INFO, "chosen: CUDA idle instance");
}
}
}
if (!p && cpu_work_fetch.nidle_now) {
p = cpu_work_fetch.choose_project(true, false);
if (p) {
cpu_emergency = true;
if (log_flags.work_fetch_debug) {
msg_printf(p, MSG_INFO, "chosen: CPU idle instance");
}
}
}
// If a resource has a shortfall,
// get work for it from the non-overworked project with greatest LTD.
//
if (!p && coproc_cuda && cuda_work_fetch.shortfall) {
p = cuda_work_fetch.choose_project(false, false);
if (p) {
if (log_flags.work_fetch_debug) {
msg_printf(p, MSG_INFO, "chosen: CUDA shortfall");
}
}
}
if (!p && cpu_work_fetch.shortfall) {
p = cpu_work_fetch.choose_project(false, false);
if (p) {
if (log_flags.work_fetch_debug) {
msg_printf(p, MSG_INFO, "chosen: CPU shortfall");
}
}
}
// If any project is not overworked and has no runnable jobs,
// get work from the one with greatest LTD.
//
if (!p && coproc_cuda) {
p = cuda_work_fetch.choose_project(false, true);
if (p) {
if (log_flags.work_fetch_debug) {
msg_printf(p, MSG_INFO, "chosen: project has no CUDA jobs");
}
}
}
if (!p) {
p = cpu_work_fetch.choose_project(false, true);
if (p) {
if (log_flags.work_fetch_debug) {
msg_printf(p, MSG_INFO, "chosen: project has no CPU jobs");
}
}
}
// decide how much work to request for each resource
//
clear_request();
if (p) {
// in emergency cases, get work only for that resource
//
if (cpu_emergency) {
cpu_work_fetch.set_request(p);
} else if (cuda_emergency) {
cuda_work_fetch.set_request(p);
} else {
// in non-emergency cases, get work for any resource
// for which the project is not overworked
//
if (!cpu_work_fetch.project_state(p).overworked()) {
cpu_work_fetch.set_request(p);
}
if (coproc_cuda) {
if (!cuda_work_fetch.project_state(p).overworked()) {
cuda_work_fetch.set_request(p);
}
}
}
}
if (coproc_cuda) {
coproc_cuda->req_secs = cuda_work_fetch.req_secs;
coproc_cuda->req_instances = cuda_work_fetch.req_instances;
coproc_cuda->estimated_delay = cuda_work_fetch.estimated_delay;
}
if (log_flags.work_fetch_debug) {
print_state();
if (p) {
print_req(p);
} else {
msg_printf(0, MSG_INFO, "No project chosen for work fetch");
}
}
return p;
}
void RSC_WORK_FETCH::set_request(PROJECT* p) {
RSC_PROJECT_WORK_FETCH& w = project_state(p);
if (p->duration_correction_factor < 0.02 || p->duration_correction_factor > 80.0) {
// if project's DCF is too big or small,
// its completion time estimates are useless; just ask for 1 second
//
req_secs = 1;
} else {
// otherwise ask for the project's share
//
req_secs = gstate.work_buf_total()*w.fetchable_share;
}
req_instances = (int)ceil(w.fetchable_share*nidle_now);
}
void WORK_FETCH::accumulate_inst_sec(ACTIVE_TASK* atp, double dt) {
APP_VERSION* avp = atp->result->avp;
PROJECT* p = atp->result->project;
double x = dt*avp->avg_ncpus;
p->cpu_pwf.secs_this_debt_interval += x;
cpu_work_fetch.secs_this_debt_interval += x;
if (coproc_cuda) {
x = dt*avp->ncudas;
p->cuda_pwf.secs_this_debt_interval += x;
cuda_work_fetch.secs_this_debt_interval += x;
}
}
// Running buggy versions may lead to a situation where
// most projects are overworked.
// If there are more overworked projects than device instances,
// this must have happened.
// Set all debts back to zero.
//
void RSC_WORK_FETCH::repair_debts() {
unsigned int i;
int noverworked = 0;
PROJECT* p;
for (i=0; inon_cpu_intensive) continue;
RSC_PROJECT_WORK_FETCH& w = project_state(p);
if (w.overworked()) {
noverworked++;
}
}
if (noverworked <= ninstances) {
return;
}
if (log_flags.debt_debug) {
msg_printf(0, MSG_INFO,
"[debt] %s: %d projects overworked; setting debts to zero",
rsc_name(rsc_type), noverworked
);
}
for (i=0; inon_cpu_intensive) continue;
RSC_PROJECT_WORK_FETCH& w = project_state(p);
w.debt = 0;
}
}
// update long-term debts for a resource.
//
void RSC_WORK_FETCH::update_debts() {
unsigned int i;
int neligible = 0;
double ders = 0;
PROJECT* p;
if (!repair_done) {
repair_debts();
repair_done = true;
}
// find the total resource share of eligible projects
//
for (i=0; iresource_share;
neligible++;
}
}
if (!neligible) {
if (log_flags.debt_debug) {
msg_printf(0, MSG_INFO,
"[debt] %s: no eligible projects", rsc_name(rsc_type)
);
}
return;
}
double max_debt=0;
bool first = true;
for (i=0; inon_cpu_intensive) continue;
RSC_PROJECT_WORK_FETCH& w = project_state(p);
if (w.debt_eligible(p, *this)) {
double share_frac = p->resource_share/ders;
// the change to a project's debt is:
// (how much it's owed) - (how much it got)
//
double delta = share_frac*secs_this_debt_interval - w.secs_this_debt_interval;
w.debt += delta;
if (log_flags.debt_debug) {
msg_printf(p, MSG_INFO,
"[debt] %s debt %.2f delta %.2f share frac %.2f (%.2f/%.2f) secs %.2f rsc_secs %.2f",
rsc_name(rsc_type),
w.debt, delta, share_frac, p->resource_share, ders, secs_this_debt_interval,
w.secs_this_debt_interval
);
}
if (first) {
max_debt = w.debt;
first = false;
} else {
if (w.debt > max_debt) {
max_debt = w.debt;
}
}
} else {
if (log_flags.debt_debug) {
msg_printf(p, MSG_INFO,
"[debt] %s ineligible; debt %.2f",
rsc_name(rsc_type), w.debt
);
}
}
}
// The net change may be
// - positive if the resource wasn't fully utilized during the debt interval
// - negative it was overcommitted (e.g., CPU)
// We need to keep eligible projects from diverging from non-eligible ones;
// also, if all the debts are large negative we need to gradually
// shift them towards zero.
// To do this, we add an offset as follows:
//
double offset;
if (-max_debt < secs_this_debt_interval) {
offset = -max_debt;
} else {
offset = secs_this_debt_interval;
}
if (log_flags.debt_debug) {
msg_printf(0, MSG_INFO, "[debt] %s debt: adding offset %.2f",
rsc_name(rsc_type), offset
);
}
for (i=0; inon_cpu_intensive) continue;
RSC_PROJECT_WORK_FETCH& w = project_state(p);
if (w.debt_eligible(p, *this)) {
w.debt += offset;
}
}
}
// find total and per-project resource shares for each resource
//
void WORK_FETCH::compute_shares() {
unsigned int i;
PROJECT* p;
for (i=0; inon_cpu_intensive) continue;
if (p->cpu_pwf.has_runnable_jobs) {
cpu_work_fetch.total_runnable_share += p->resource_share;
}
if (p->cuda_pwf.has_runnable_jobs) {
cuda_work_fetch.total_runnable_share += p->resource_share;
}
if (!p->pwf.can_fetch_work) continue;
if (p->cpu_pwf.may_have_work) {
cpu_work_fetch.total_fetchable_share += p->resource_share;
}
if (coproc_cuda && p->cuda_pwf.may_have_work) {
cuda_work_fetch.total_fetchable_share += p->resource_share;
}
}
for (i=0; inon_cpu_intensive) continue;
if (p->cpu_pwf.has_runnable_jobs) {
p->cpu_pwf.runnable_share = p->resource_share/cpu_work_fetch.total_runnable_share;
}
if (p->cuda_pwf.has_runnable_jobs) {
p->cuda_pwf.runnable_share = p->resource_share/cuda_work_fetch.total_runnable_share;
}
if (!p->pwf.can_fetch_work) continue;
if (p->cpu_pwf.may_have_work) {
p->cpu_pwf.fetchable_share = p->resource_share/cpu_work_fetch.total_fetchable_share;
}
if (coproc_cuda && p->cuda_pwf.may_have_work) {
p->cuda_pwf.fetchable_share = p->resource_share/cuda_work_fetch.total_fetchable_share;
}
}
}
// should this project be accumulating debt for this resource?
//
bool RSC_PROJECT_WORK_FETCH::debt_eligible(PROJECT* p, RSC_WORK_FETCH& rwf) {
if (p->non_cpu_intensive) return false;
if (p->suspended_via_gui) return false;
if (p->dont_request_more_work) return false;
if (has_runnable_jobs) return true;
if (backoff_time > gstate.now) return false;
// The last time we asked for work we didn't get any,
// but it's been a while since we asked.
// In this case, accumulate debt until we reach (around) zero,
// but then stop.
if (backoff_interval == MAX_BACKOFF_INTERVAL) {
if (debt > -rwf.ninstances*DEBT_ADJUST_PERIOD) {
return false;
}
}
if (p->min_rpc_time > gstate.now) return false;
return true;
}
void WORK_FETCH::write_request(FILE* f) {
fprintf(f,
" %f\n"
" %f\n"
" %d\n",
cpu_work_fetch.req_secs,
cpu_work_fetch.req_secs,
cpu_work_fetch.req_instances
);
}
// we just got a scheduler reply with the given jobs; update backoffs
//
void WORK_FETCH::handle_reply(PROJECT* p, vector new_results) {
unsigned int i;
bool got_cpu = false, got_cuda = false;
// if didn't get any jobs, back off on requested resource types
//
if (!new_results.size()) {
// but not if RPC was requested by project
//
if (p->sched_rpc_pending != RPC_REASON_PROJECT_REQ) {
if (cpu_work_fetch.req_secs) {
p->cpu_pwf.backoff(p, "CPU");
}
if (coproc_cuda && coproc_cuda->req_secs) {
p->cuda_pwf.backoff(p, "CUDA");
}
}
return;
}
// if we did get jobs, clear backoff on resource types
//
for (i=0; iavp->ncudas) got_cuda = true;
else got_cpu = true;
}
if (got_cpu) p->cpu_pwf.clear_backoff();
if (got_cuda) p->cuda_pwf.clear_backoff();
}
void WORK_FETCH::set_initial_work_request() {
cpu_work_fetch.req_secs = 1;
if (coproc_cuda) {
coproc_cuda->req_secs = 1;
}
}
// called once, at client startup
//
void WORK_FETCH::init() {
cpu_work_fetch.rsc_type = RSC_TYPE_CPU;
cpu_work_fetch.ninstances = gstate.ncpus;
if (coproc_cuda) {
cuda_work_fetch.rsc_type = RSC_TYPE_CUDA;
cuda_work_fetch.ninstances = coproc_cuda->count;
cuda_work_fetch.speed = coproc_cuda->flops_estimate()/gstate.host_info.p_fpops;
}
}
void RSC_PROJECT_WORK_FETCH::backoff(PROJECT* p, char* name) {
if (backoff_interval) {
backoff_interval *= 2;
if (backoff_interval > MAX_BACKOFF_INTERVAL) backoff_interval = MAX_BACKOFF_INTERVAL;
} else {
backoff_interval = MIN_BACKOFF_INTERVAL;
}
backoff_time = gstate.now + backoff_interval;
if (log_flags.work_fetch_debug) {
msg_printf(p, MSG_INFO,
"[wfd] backing off %s %.0f sec", name, backoff_interval
);
}
}
////////////////////////
void CLIENT_STATE::compute_nuploading_results() {
unsigned int i;
for (i=0; inuploading_results = 0;
}
for (i=0; istate() == RESULT_FILES_UPLOADING) {
rp->project->nuploading_results++;
}
}
}
bool PROJECT::runnable() {
if (suspended_via_gui) return false;
for (unsigned int i=0; iproject != this) continue;
if (rp->runnable()) return true;
}
return false;
}
bool PROJECT::downloading() {
if (suspended_via_gui) return false;
for (unsigned int i=0; iproject != this) continue;
if (rp->downloading()) return true;
}
return false;
}
bool PROJECT::some_result_suspended() {
unsigned int i;
for (i=0; iproject != this) continue;
if (rp->suspended_via_gui) return true;
}
return false;
}
bool PROJECT::can_request_work() {
if (suspended_via_gui) return false;
if (master_url_fetch_pending) return false;
if (min_rpc_time > gstate.now) return false;
if (dont_request_more_work) return false;
if (gstate.in_abort_sequence) return false;
return true;
}
bool PROJECT::potentially_runnable() {
if (runnable()) return true;
if (can_request_work()) return true;
if (downloading()) return true;
return false;
}
bool PROJECT::nearly_runnable() {
if (runnable()) return true;
if (downloading()) return true;
return false;
}
bool RESULT::runnable() {
if (suspended_via_gui) return false;
if (project->suspended_via_gui) return false;
if (state() != RESULT_FILES_DOWNLOADED) return false;
return true;
}
bool RESULT::nearly_runnable() {
return runnable() || downloading();
}
// Return true if the result is waiting for its files to download,
// and nothing prevents this from happening soon
//
bool RESULT::downloading() {
if (suspended_via_gui) return false;
if (project->suspended_via_gui) return false;
if (state() > RESULT_FILES_DOWNLOADING) return false;
return true;
}
double RESULT::estimated_duration_uncorrected() {
return wup->rsc_fpops_est/avp->flops;
}
// estimate how long a result will take on this host
//
#ifdef SIM
double RESULT::estimated_duration(bool for_work_fetch) {
SIM_PROJECT* spp = (SIM_PROJECT*)project;
if (dual_dcf && for_work_fetch && spp->completions_ratio_mean) {
return estimated_duration_uncorrected()*spp->completions_ratio_mean;
}
return estimated_duration_uncorrected()*project->duration_correction_factor;
}
#else
double RESULT::estimated_duration(bool) {
return estimated_duration_uncorrected()*project->duration_correction_factor;
}
#endif
double RESULT::estimated_time_remaining(bool for_work_fetch) {
if (computing_done()) return 0;
ACTIVE_TASK* atp = gstate.lookup_active_task_by_result(this);
if (atp) {
return atp->est_time_to_completion(for_work_fetch);
}
return estimated_duration(for_work_fetch);
}
// Returns the estimated CPU time to completion (in seconds) of this task.
// Compute this as a weighted average of estimates based on
// 1) the workunit's flops count
// 2) the current reported CPU time and fraction done
//
double ACTIVE_TASK::est_time_to_completion(bool for_work_fetch) {
if (fraction_done >= 1) return 0;
double wu_est = result->estimated_duration(for_work_fetch);
if (fraction_done <= 0) return wu_est;
double frac_est = (elapsed_time / fraction_done) - elapsed_time;
double fraction_left = 1-fraction_done;
double wu_weight = fraction_left * fraction_left;
double fd_weight = 1 - wu_weight;
double x = fd_weight*frac_est + wu_weight*fraction_left*wu_est;
return x;
}
// the fraction of time a given CPU is working for BOINC
//
double CLIENT_STATE::overall_cpu_frac() {
double running_frac = time_stats.on_frac * time_stats.active_frac;
if (running_frac < 0.01) running_frac = 0.01;
if (running_frac > 1) running_frac = 1;
return running_frac;
}
// called when benchmarks change
//
void CLIENT_STATE::scale_duration_correction_factors(double factor) {
if (factor <= 0) return;
for (unsigned int i=0; iduration_correction_factor *= factor;
}
if (log_flags.dcf_debug) {
msg_printf(NULL, MSG_INFO,
"[dcf] scaling all duration correction factors by %f",
factor
);
}
}
// Choose a new host CPID.
// If using account manager, do scheduler RPCs
// to all acct-mgr-attached projects to propagate the CPID
//
void CLIENT_STATE::generate_new_host_cpid() {
host_info.generate_host_cpid();
for (unsigned int i=0; iattached_via_acct_mgr) {
projects[i]->sched_rpc_pending = RPC_REASON_ACCT_MGR_REQ;
projects[i]->set_min_rpc_time(now + 15, "Sending new host CPID");
}
}
}