// This file is part of BOINC. // http://boinc.berkeley.edu // Copyright (C) 2008 University of California // // BOINC is free software; you can redistribute it and/or modify it // under the terms of the GNU Lesser General Public License // as published by the Free Software Foundation, // either version 3 of the License, or (at your option) any later version. // // BOINC is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. // See the GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with BOINC. If not, see . // Modify claimed credit based on the historical granted credit if // the project is configured to do this // // functions related to the computation and granting of credit // Note: this is credit.cpp rather than sched_credit.cpp // because you might grant credit e.g. from a trickle handler #include #include "boinc_db.h" #include "sched_config.h" #include "sched_msgs.h" #include "sched_util.h" #include "credit.h" double fpops_to_credit(double fpops, double intops) { // TODO: use fp_weight if specified in config file double fpc = (fpops/1e9)*COBBLESTONE_FACTOR/SECONDS_PER_DAY; double intc = (intops/1e9)*COBBLESTONE_FACTOR/SECONDS_PER_DAY; return std::max(fpc, intc); } double credit_multiplier(int appid, time_t create_time) { DB_CREDIT_MULTIPLIER mult; mult.get_nearest(appid, create_time); return mult.multiplier; } static void modify_credit_rating(HOST& host) { double new_claimed_credit = 0; double percent_difference = 0; // The percent difference between claim and history double difference_weight = 1; // The weight to be applied based on the difference between claim and // history double credit_weight = 1; // The weight to be applied based on how much credit the host has earned // (hosts that are new do not have accurate histories so they shouldn't // have much weight) double combined_weight = 1; // Only modify if the credit_per_cpu_sec is established // and the option is enabled // if (host.credit_per_cpu_sec > 0 && config.granted_credit_weight > 0.0 && config.granted_credit_weight <= 1.0 ) { // Calculate the difference between claimed credit and the hosts // historical granted credit history percent_difference=host.claimed_credit_per_cpu_sec-host.credit_per_cpu_sec; percent_difference = fabs(percent_difference/host.credit_per_cpu_sec); // A study on World Community Grid determined that 50% of hosts // claimed within 10% of their historical credit per cpu sec. // These hosts should not have their credit modified. // if (percent_difference < 0.1) { log_messages.printf(MSG_DEBUG, "[HOSTID:%d] Claimed credit %.1lf not " "modified. Percent Difference %.4lf\n", host.id, host.claimed_credit_per_cpu_sec*86400, percent_difference ); return; } // The study also determined that 95% of hosts claim within // 50% of their historical credit per cpu sec. // Computers claiming above 10% but below 50% should have their // credit adjusted based on their history // Computers claiming more than 50% above should use their // historical value. if (percent_difference < .5) { // weight based on variance from historical credit difference_weight = 1-(0.5-percent_difference)/0.4; } else { difference_weight = 1; } // A weight also needs to be calculated based upon the amount of // credit awarded to a host. This is becuase hosts without much // credit awarded do not yet have an accurate history so the weight // should be limited for these hosts. if (config.granted_credit_ramp_up) { credit_weight=config.granted_credit_ramp_up - host.total_credit; credit_weight=credit_weight/config.granted_credit_ramp_up; if (credit_weight < 0) credit_weight = 0; credit_weight = 1 - credit_weight; } // Compute the combined weight combined_weight = credit_weight*difference_weight*config.granted_credit_weight; log_messages.printf(MSG_DEBUG, "[HOSTID:%d] Weight details: " "diff_weight=%.4lf credit_weight=%.4lf config_weight=%.4lf\n", host.id, difference_weight, credit_weight, config.granted_credit_weight ); // Compute the new value for claimed credit new_claimed_credit=(1-combined_weight)*host.claimed_credit_per_cpu_sec; new_claimed_credit=new_claimed_credit+combined_weight*host.credit_per_cpu_sec; if (new_claimed_credit < host.claimed_credit_per_cpu_sec) { log_messages.printf(MSG_DEBUG, "[HOSTID:%d] Modified claimed credit " "(lowered) original: %.1lf new: %.1lf historical: %.1lf " "combined weight: %.4lf\n", host.id, host.claimed_credit_per_cpu_sec*86400, new_claimed_credit*86400, host.credit_per_cpu_sec*86400, combined_weight ); } else { log_messages.printf(MSG_DEBUG, "[HOSTID:%d] Modified claimed credit " "(increased) original: %.1lf new: %.1lf historical: %.1lf " "combined weight: %.4lf\n", host.id, host.claimed_credit_per_cpu_sec*86400, new_claimed_credit*86400, host.credit_per_cpu_sec*86400, combined_weight ); } host.claimed_credit_per_cpu_sec = new_claimed_credit; } } // somewhat arbitrary formula for credit as a function of CPU time. // Could also include terms for RAM size, network speed etc. // void compute_credit_rating(HOST& host) { double fpw, intw, scale, x; if (config.use_benchmark_weights) { fpw = config.fp_benchmark_weight; intw = 1. - fpw; // FP benchmark is 2x int benchmark, on average. // Compute a scaling factor the gives the same credit per day // no matter how benchmarks are weighted // scale = 1.5 / (2*intw + fpw); } else { fpw = .5; intw = .5; scale = 1; } x = fpw*fabs(host.p_fpops) + intw*fabs(host.p_iops); x /= 1e9; x *= COBBLESTONE_FACTOR; x /= SECONDS_PER_DAY; x *= scale; host.claimed_credit_per_cpu_sec = x; if (config.granted_credit_weight) { modify_credit_rating(host); } } // This function should be called from the validator whenever credit // is granted to a host. It's purpose is to track the average credit // per cpu time for that host. // // It updates an exponentially-decaying estimate of credit_per_cpu_sec // Note that this does NOT decay with time, but instead decays with // total credits earned. If a host stops earning credits, then this // quantity stops decaying. So credit_per_cpu_sec must NOT be // periodically decayed using the update_stats utility or similar // methods. // // The intended purpose is for cross-project credit comparisons on // BOINC statistics pages, for hosts attached to multiple machines. // One day people will write PhD theses on how to normalize credit // values to equalize them across projects. I hope this will be done // according to "Allen's principle": "Credits granted by a project // should be normalized so that, averaged across all hosts attached to // multiple projects, projects grant equal credit per cpu second." // This principle ensures that (on average) participants will choose // projects based on merit, not based on credits. It also ensures // that (on average) host machines migrate to the projects for which // they are best suited. // // For cross-project comparison the value of credit_per_cpu_sec should // be exported in the statistics file host_id.gz, which is written by // the code in db_dump.C. // // Algorithm: credits_per_cpu_second should be updated each time that // a host is granted credit, according to: // // CREDIT_AVERAGE_CONST = 500 [see Note 5] // MAX_CREDIT_PER_CPU_SEC = 0.1 [see Note 6] // // e = tanh(granted_credit/CREDIT_AVERAGE_CONST) // if (e < 0) then e = 0 // if (e > 1) then e = 1 // if (credit_per_cpu_sec <= 0) then e = 1 // if (cpu_time <= 0) then e = 0 [see Note 4] // if (granted_credit <= 0) then e = 0 [see Note 3] // // rate = granted_credit/cpu_time // if (rate < 0) rate = 0 // if (rate > MAX_CREDIT_PER_CPU_SEC) rate = MAX_CREDIT_PER_CPU_SEC // // credit_per_cpu_sec = e * rate + (1 - e) * credit_per_cpu_sec // Note 0: all quantities above should be treated as real numbers // Note 1: cpu_time is measured in seconds // Note 2: When a host is created, the initial value of // credit_per_cpu_sec, should be zero. // Note 3: If a host has done invalid work (granted_credit==0) we have // chosen not to include it. One might argue that the // boundary case granted_credit==0 should be treated the same // as granted_credit>0. However the goal here is not to // identify cpus whose host machines sometimes produce // rubbish. It is to get a measure of how effectively the cpu // runs the application code. // Note 4: e==0 means 'DO NOT include the first term on the rhs of the // equation defining credit_per_cpu_sec' which is equivalent // to 'DO NOT update credit_per_cpu_sec'. // Note 5: CREDIT_AVERAGE_CONST determines the exponential decay // credit used in averaging credit_per_cpu_sec. It may be // changed at any time, even if the project database has // already been populated with non-zero values of // credit_per_cpu_sec. // Note 6: Typical VERY FAST cpus have credit_per_cpu_sec of around // 0.02. This is a safety mechanism designed to prevent // trouble if a client or host has reported absurd values (due // to a bug in client or server software or by cheating). In // five years when cpus are five time faster, please increase // the value of R. You may also want to increase the value of // CREDIT_AVERAGE_CONST. // // Nonzero return value: host exceeded the max allowed // credit/cpu_sec. // int update_credit_per_cpu_sec( double granted_credit, // credit granted for this work double cpu_time, // cpu time (seconds) used for this work double& credit_per_cpu_sec // (average) credit per cpu second ) { int retval = 0; // Either of these values may be freely changed in the future. // When CPUs get much faster one must increase the 'sanity-check' // value of max_credit_per_cpu_sec. At that time it would also // make sense to proportionally increase the credit_average_const. // const double credit_average_const = 500; const double max_credit_per_cpu_sec = 0.07; double e = tanh(granted_credit/credit_average_const); if (e <= 0.0 || cpu_time == 0.0 || granted_credit == 0.0) return retval; if (e > 1.0 || credit_per_cpu_sec == 0.0) e = 1.0; double rate = granted_credit/cpu_time; if (rate < 0.0) rate = 0.0; if (rate > max_credit_per_cpu_sec) { rate = max_credit_per_cpu_sec; retval = 1; } credit_per_cpu_sec = e * rate + (1.0 - e) * credit_per_cpu_sec; return retval; } // Grant the host (and associated user and team) // the given amount of credit for a job (or part of a job) // that started at the given time // int grant_credit( DB_HOST& host, double start_time, double cpu_time, double credit ) { DB_USER user; DB_TEAM team; int retval; char buf[256]; // first, process the host update_average( start_time, credit, CREDIT_HALF_LIFE, host.expavg_credit, host.expavg_time ); // compute new credit per CPU time // retval = update_credit_per_cpu_sec( credit, cpu_time, host.credit_per_cpu_sec ); if (retval) { log_messages.printf(MSG_CRITICAL, "[HOST#%d] claimed too much credit (%f) in too little CPU time (%f)\n", host.id, credit, cpu_time ); } sprintf( buf, "total_credit=total_credit+%f, expavg_credit=%f, expavg_time=%f, credit_per_cpu_sec=%f", credit, host.expavg_credit, host.expavg_time, host.credit_per_cpu_sec ); retval = host.update_field(buf); if (retval) { log_messages.printf(MSG_CRITICAL, "update of host %d failed %d\n", host.id, retval ); } // then the user retval = user.lookup_id(host.userid); if (retval) { log_messages.printf(MSG_CRITICAL, "lookup of user %d failed %d\n", host.userid, retval ); return retval; } update_average( start_time, credit, CREDIT_HALF_LIFE, user.expavg_credit, user.expavg_time ); sprintf( buf, "total_credit=total_credit+%f, expavg_credit=%f, expavg_time=%f", credit, user.expavg_credit, user.expavg_time ); retval = user.update_field(buf); if (retval) { log_messages.printf(MSG_CRITICAL, "update of user %d failed %d\n", host.userid, retval ); } // and finally the team if (user.teamid) { retval = team.lookup_id(user.teamid); if (retval) { log_messages.printf(MSG_CRITICAL, "lookup of team %d failed %d\n", user.teamid, retval ); return retval; } update_average( start_time, credit, CREDIT_HALF_LIFE, team.expavg_credit, team.expavg_time ); sprintf(buf, "total_credit=total_credit+%f, expavg_credit=%f, expavg_time=%f", credit, team.expavg_credit, team.expavg_time ); retval = team.update_field(buf); if (retval) { log_messages.printf(MSG_CRITICAL, "update of team %d failed %d\n", team.id, retval ); } } return 0; }