// This file is part of BOINC. // http://boinc.berkeley.edu // Copyright (C) 2008 University of California // // BOINC is free software; you can redistribute it and/or modify it // under the terms of the GNU Lesser General Public License // as published by the Free Software Foundation, // either version 3 of the License, or (at your option) any later version. // // BOINC is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. // See the GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with BOINC. If not, see . #ifdef _WIN32 #ifndef __STDWX_H__ #include "boinc_win.h" #else #include "stdwx.h" #endif #include "win_util.h" #endif #if defined(_MSC_VER) || defined(__MINGW32__) #define finite _finite #endif #ifndef M_LN2 #define M_LN2 0.693147180559945309417 #endif #ifdef _USING_FCGI_ #include "boinc_fcgi.h" #define perror FCGI::perror #endif #ifndef _WIN32 #include "config.h" #if HAVE_UNISTD_H #include #endif #include #include #include #include #include #include #include #include #include #if HAVE_IEEEFP_H #include extern "C" { int finite(double); } #endif #endif #include "error_numbers.h" #include "common_defs.h" #include "filesys.h" #include "base64.h" #include "mfile.h" #include "miofile.h" #include "parse.h" #include "util.h" using std::min; using std::string; using std::vector; #define EPOCHFILETIME_SEC (11644473600.) #define TEN_MILLION 10000000. #ifdef GCL_SIMULATOR double simtime; #endif // return time of day (seconds since 1970) as a double // double dtime() { #ifdef GCL_SIMULATOR return simtime; #else #ifdef _WIN32 LARGE_INTEGER time; FILETIME sysTime; double t; GetSystemTimeAsFileTime(&sysTime); time.LowPart = sysTime.dwLowDateTime; time.HighPart = sysTime.dwHighDateTime; // Time is in 100 ns units t = (double)time.QuadPart; // Convert to 1 s units t /= TEN_MILLION; /* In seconds */ t -= EPOCHFILETIME_SEC; /* Offset to the Epoch time */ return t; #else struct timeval tv; gettimeofday(&tv, 0); return tv.tv_sec + (tv.tv_usec/1.e6); #endif #endif } // return time today 0:00 in seconds since 1970 as a double // double dday() { double now=dtime(); return (now-fmod(now, SECONDS_PER_DAY)); } // sleep for a specified number of seconds // void boinc_sleep(double seconds) { #ifdef _WIN32 ::Sleep((int)(1000*seconds)); #else double end_time = dtime() + seconds - 0.01; // sleep() and usleep() can be interrupted by SIGALRM, // so we may need multiple calls // while (1) { if (seconds >= 1) { sleep((unsigned int) seconds); } else { usleep((int)fmod(seconds*1000000, 1000000)); } seconds = end_time - dtime(); if (seconds <= 0) break; } #endif } void push_unique(string s, vector& v) { for (unsigned int i=0; i0, // using the first-order Taylor expansion of // exp(x)=1+x+O(x^2). // So to the lowest order in diff: // weight = 1 - diff ln(2) / half_life // so one has // avg += (1-weight)*(work/diff_days) // avg += [diff*ln(2)/half_life] * (work*SECONDS_PER_DAY/diff) // notice that diff cancels out, leaving // avg += [ln(2)/half_life] * work*SECONDS_PER_DAY double diff, diff_days, weight; diff = now - avg_time; if (diff<0) diff=0; diff_days = diff/SECONDS_PER_DAY; weight = exp(-diff*M_LN2/half_life); avg *= weight; if ((1.0-weight) > 1.e-6) { avg += (1-weight)*(work/diff_days); } else { avg += M_LN2*work*SECONDS_PER_DAY/half_life; } } else if (work) { // If first time, average is just work/duration // double dd = (now - work_start_time)/SECONDS_PER_DAY; avg = work/dd; } avg_time = now; } #ifndef _USING_FCGI_ #ifndef _WIN32 // (linux) return current CPU time of the given process // double linux_cpu_time(int pid) { FILE *file; char file_name[24]; unsigned long utime = 0, stime = 0; int n; sprintf(file_name,"/proc/%d/stat",pid); if ((file = fopen(file_name,"r")) != NULL) { n = fscanf(file,"%*s%*s%*s%*s%*s%*s%*s%*s%*s%*s%*s%*s%*s%lu%lu",&utime,&stime); fclose(file); if (n != 2) return 0; } return (double)(utime + stime)/100; } #endif #endif void boinc_crash() { #ifdef _WIN32 DebugBreak(); #else abort(); #endif } // read file (at most max_len chars, if nonzero) into malloc'd buf // int read_file_malloc(const char* path, char*& buf, size_t max_len, bool tail) { int retval; double size; retval = file_size(path, size); if (retval) return retval; // Note: the fseek() below won't work unless we use binary mode in fopen #ifndef _USING_FCGI_ FILE *f = fopen(path, "rb"); #else FCGI_FILE *f = FCGI::fopen(path, "rb"); #endif if (!f) return ERR_FOPEN; #ifndef _USING_FCGI_ if (max_len && size > max_len) { if (tail) { fseek(f, (long)size-(long)max_len, SEEK_SET); } size = max_len; } #endif size_t isize = (size_t)size; buf = (char*)malloc(isize+1); if (!buf) { fclose(f); return ERR_MALLOC; } size_t n = fread(buf, 1, isize, f); buf[n] = 0; fclose(f); return 0; } // read file (at most max_len chars, if nonzero) into string // int read_file_string( const char* path, string& result, size_t max_len, bool tail ) { result.erase(); int retval; char* buf; retval = read_file_malloc(path, buf, max_len, tail); if (retval) return retval; result = buf; free(buf); return 0; } // chdir into the given directory, and run a program there. // If nsecs is nonzero, make sure it's still running after that many seconds. // // argv is set up Unix-style, i.e. argv[0] is the program name // #ifdef _WIN32 int run_program( const char* dir, const char* file, int argc, char *const argv[], double nsecs, HANDLE& id ) { int retval; PROCESS_INFORMATION process_info; STARTUPINFOA startup_info; char cmdline[1024]; char error_msg[1024]; unsigned long status; memset(&process_info, 0, sizeof(process_info)); memset(&startup_info, 0, sizeof(startup_info)); startup_info.cb = sizeof(startup_info); strcpy(cmdline, ""); for (int i=0; i timeout) break; } return retval; } bool boinc_is_finite(double x) { #if defined (HPUX_SOURCE) return _Isfinite(x); return false; #else return finite(x) != 0; #endif } #define PI2 (2*3.1415926) // generate normal random numbers using Box-Muller. // this generates 2 at a time, so cache the other one // double rand_normal() { static bool cached; static double cached_value; if (cached) { cached = false; return cached_value; } double u1 = drand(); double u2 = drand(); double z = sqrt(-2*log(u1)); cached_value = z*sin(PI2*u2); cached = true; return z*cos(PI2*u2); }