// This file is part of BOINC.
// http://boinc.berkeley.edu
// Copyright (C) 2007 University of California
//
// BOINC is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License
// as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// BOINC is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with BOINC. If not, see .
#if defined(_WIN32)
#include "boinc_win.h"
#else
#ifdef _USING_FCGI_
#include "boinc_fcgi.h"
#else
#include
#endif
#include
#include
#include
#endif
#ifdef _WIN32
#include "win_util.h"
#ifdef _MSC_VER
#define snprintf _snprintf
#endif
#else
#ifdef __APPLE__
// Suppress obsolete warning when building for OS 10.3.9
#define DLOPEN_NO_WARN
#include
#endif
#include "config.h"
#include
#include
#include
#endif
#include "error_numbers.h"
#include "filesys.h"
#include "parse.h"
#include "str_replace.h"
#include "util.h"
#include "coproc.h"
#ifndef _USING_FCGI_
using std::perror;
#endif
int COPROC_REQ::parse(XML_PARSER& xp) {
safe_strcpy(type, "");
count = 0;
while (!xp.get_tag()) {
if (xp.match_tag("/coproc")) {
if (!strlen(type)) return ERR_XML_PARSE;
return 0;
}
if (xp.parse_str("type", type, sizeof(type))) continue;
if (xp.parse_double("count", count)) continue;
}
return ERR_XML_PARSE;
}
int PCI_INFO::parse(XML_PARSER& xp) {
present = false;
bus_id = device_id = domain_id = 0;
while (!xp.get_tag()) {
if (xp.match_tag("/pci_info")) {
return 0;
}
if (xp.parse_int("bus_id", bus_id)) continue;
if (xp.parse_int("device_id", device_id)) continue;
if (xp.parse_int("domain_id", domain_id)) continue;
}
return ERR_XML_PARSE;
}
#ifndef _USING_FCGI_
void PCI_INFO::write(MIOFILE& f) {
f.printf(
"\n"
" %d\n"
" %d\n"
" %d\n"
"\n",
bus_id,
device_id,
domain_id
);
}
void COPROC::write_xml(MIOFILE& f, bool scheduler_rpc) {
f.printf(
"\n"
" %s\n"
" %d\n"
" %f\n",
type, count, peak_flops
);
if (scheduler_rpc) {
write_request(f);
}
if (have_opencl) {
opencl_prop.write_xml(f, "coproc_opencl");
}
f.printf("\n");
}
void COPROC::write_request(MIOFILE& f) {
f.printf(
" %f\n"
" %f\n"
" %f\n",
req_secs,
req_instances,
estimated_delay
);
}
#endif
int COPROC::parse(XML_PARSER& xp) {
char buf[256];
safe_strcpy(type, "");
clear();
for (int i=0; i: %d\n", retval);
}
}
}
return ERR_XML_PARSE;
}
#ifdef _USING_FCGI_
void COPROCS::write_xml(MIOFILE&, bool) {
}
#else
void COPROCS::write_xml(MIOFILE& mf, bool scheduler_rpc) {
mf.printf(" \n");
for (int i=1; i\n");
}
#endif
void COPROC_NVIDIA::description(char* buf, int buflen) {
char vers[256], cuda_vers[256];
if (display_driver_version) {
#ifdef __APPLE__
int maj = display_driver_version >> 16;
int min = (display_driver_version >> 8) & 0xff;
int rev = display_driver_version & 0xff;
snprintf(vers, sizeof(vers), "%d.%d.%d", maj, min, rev);
#else
int maj = display_driver_version/100;
int min = display_driver_version%100;
snprintf(vers, sizeof(vers), "%d.%02d", maj, min);
#endif
} else {
safe_strcpy(vers, "unknown");
}
if (cuda_version) {
int maj = cuda_version/1000;
int min = (cuda_version%1000)/10;
snprintf(cuda_vers, sizeof(cuda_vers), "%d.%d", maj, min);
} else {
safe_strcpy(cuda_vers, "unknown");
}
snprintf(buf, buflen,
"%s (driver version %s, CUDA version %s, compute capability %d.%d, %.0fMB, %.0fMB available, %.0f GFLOPS peak)",
prop.name, vers, cuda_vers, prop.major, prop.minor,
prop.totalGlobalMem/MEGA, available_ram/MEGA, peak_flops/1e9
);
}
#ifndef _USING_FCGI_
void COPROC_NVIDIA::write_xml(MIOFILE& f, bool scheduler_rpc) {
f.printf(
"\n"
" %d\n"
" %s\n"
" %f\n"
" %d\n"
" %d\n",
count,
prop.name,
available_ram,
have_cuda ? 1 : 0,
have_opencl ? 1 : 0
);
if (scheduler_rpc) {
write_request(f);
}
f.printf(
" %f\n"
" %d\n"
" %d\n"
" %f\n"
" %f\n"
" %d\n"
" %d\n"
" %f\n"
" %d\n"
" %d %d %d\n"
" %d %d %d\n"
" %d\n"
" %f\n"
" %d\n"
" %d\n"
" %f\n"
" %d\n"
" %d\n",
peak_flops,
cuda_version,
display_driver_version,
prop.totalGlobalMem,
prop.sharedMemPerBlock,
prop.regsPerBlock,
prop.warpSize,
prop.memPitch,
prop.maxThreadsPerBlock,
prop.maxThreadsDim[0], prop.maxThreadsDim[1], prop.maxThreadsDim[2],
prop.maxGridSize[0], prop.maxGridSize[1], prop.maxGridSize[2],
prop.clockRate,
prop.totalConstMem,
prop.major,
prop.minor,
prop.textureAlignment,
prop.deviceOverlap,
prop.multiProcessorCount
);
if (have_opencl) {
opencl_prop.write_xml(f, "coproc_opencl");
}
if (!scheduler_rpc) {
for (int i=0; i\n");
}
#endif
void COPROC_NVIDIA::clear() {
static const COPROC_NVIDIA x(0);
*this = x;
safe_strcpy(type, proc_type_name_xml(PROC_TYPE_NVIDIA_GPU));
estimated_delay = -1; // mark as absent
cuda_version = 0;
display_driver_version = 0;
safe_strcpy(prop.name, "");
prop.totalGlobalMem = 0.0;
prop.sharedMemPerBlock = 0;
prop.regsPerBlock = 0;
prop.warpSize = 0;
prop.memPitch = 0;
prop.maxThreadsPerBlock = 0;
prop.maxThreadsDim[0] = 0;
prop.maxThreadsDim[1] = 0;
prop.maxThreadsDim[2] = 0;
prop.maxGridSize[0] = 0;
prop.maxGridSize[1] = 0;
prop.maxGridSize[2] = 0;
prop.clockRate = 0;
prop.totalConstMem = 0;
prop.major = 0;
prop.minor = 0;
prop.textureAlignment = 0;
prop.deviceOverlap = 0;
prop.multiProcessorCount = 0;
is_used = COPROC_USED;
}
int COPROC_NVIDIA::parse(XML_PARSER& xp) {
char buf2[256];
int retval;
int ipci = 0;
clear();
while (!xp.get_tag()) {
if (xp.match_tag("/coproc_cuda")) {
if (!peak_flops) {
set_peak_flops();
}
if (!available_ram) {
available_ram = prop.totalGlobalMem;
}
return 0;
}
if (xp.parse_int("count", count)) continue;
if (xp.parse_double("peak_flops", peak_flops)) continue;
if (xp.parse_bool("have_cuda", have_cuda)) continue;
if (xp.parse_bool("have_opencl", have_opencl)) continue;
if (xp.parse_double("available_ram", available_ram)) continue;
if (xp.parse_double("req_secs", req_secs)) continue;
if (xp.parse_double("req_instances", req_instances)) continue;
if (xp.parse_double("estimated_delay", estimated_delay)) continue;
if (xp.parse_int("cudaVersion", cuda_version)) continue;
if (xp.parse_int("drvVersion", display_driver_version)) continue;
if (xp.parse_str("name", prop.name, sizeof(prop.name))) continue;
if (xp.parse_double("totalGlobalMem", prop.totalGlobalMem)) continue;
if (xp.parse_double("sharedMemPerBlock", prop.sharedMemPerBlock)) continue;
if (xp.parse_int("regsPerBlock", prop.regsPerBlock)) continue;
if (xp.parse_int("warpSize", prop.warpSize)) continue;
if (xp.parse_double("memPitch", prop.memPitch)) continue;
if (xp.parse_int("maxThreadsPerBlock", prop.maxThreadsPerBlock)) continue;
if (xp.parse_str("maxThreadsDim", buf2, sizeof(buf2))) {
// can't use sscanf here (FCGI)
//
prop.maxThreadsDim[0] = atoi(buf2);
char* p = strchr(buf2, ' ');
if (p) {
p++;
prop.maxThreadsDim[1] = atoi(p);
p = strchr(p, ' ');
if (p) {
p++;
prop.maxThreadsDim[2] = atoi(p);
}
}
continue;
}
if (xp.parse_str("maxGridSize", buf2, sizeof(buf2))) {
prop.maxGridSize[0] = atoi(buf2);
char* p = strchr(buf2, ' ');
if (p) {
p++;
prop.maxGridSize[1] = atoi(p);
p = strchr(p, ' ');
if (p) {
p++;
prop.maxGridSize[2] = atoi(p);
}
}
continue;
}
if (xp.parse_int("clockRate", prop.clockRate)) continue;
if (xp.parse_double("totalConstMem", prop.totalConstMem)) continue;
if (xp.parse_int("major", prop.major)) continue;
if (xp.parse_int("minor", prop.minor)) continue;
if (xp.parse_double("textureAlignment", prop.textureAlignment)) continue;
if (xp.parse_int("deviceOverlap", prop.deviceOverlap)) continue;
if (xp.parse_int("multiProcessorCount", prop.multiProcessorCount)) continue;
if (xp.match_tag("pci_info")) {
PCI_INFO p;
p.parse(xp);
if (ipci < MAX_COPROC_INSTANCES) {
pci_infos[ipci++] = p;
}
}
if (xp.match_tag("coproc_opencl")) {
retval = opencl_prop.parse(xp, "/coproc_opencl");
if (retval) return retval;
continue;
}
}
return ERR_XML_PARSE;
}
void COPROC_NVIDIA::set_peak_flops() {
double x=0;
int flops_per_clock=0, cores_per_proc=0;
if (prop.major || opencl_prop.nv_compute_capability_major) {
int major = prop.major;
int minor = prop.minor;
if (opencl_prop.nv_compute_capability_major) major = opencl_prop.nv_compute_capability_major;
if (opencl_prop.nv_compute_capability_minor) minor = opencl_prop.nv_compute_capability_minor;
switch (major) {
case 1:
flops_per_clock = 3;
cores_per_proc = 8;
break;
case 2:
flops_per_clock = 2;
switch (minor) {
case 0:
cores_per_proc = 32;
break;
default:
cores_per_proc = 48;
break;
}
break;
case 3:
flops_per_clock = 2;
cores_per_proc = 192;
break;
case 5:
flops_per_clock = 2;
cores_per_proc = 128;
break;
case 6:
flops_per_clock = 2;
switch (minor) {
case 0: // special for Tesla P100 (GP100)
cores_per_proc = 64;
break;
default:
cores_per_proc = 128;
break;
}
break;
case 7: // for both cc7.0 (Titan V, Tesla V100) and cc7.5 (RTX, Tesla T4)
default:
flops_per_clock = 2;
cores_per_proc = 64;
break;
}
}
if (prop.clockRate) {
// clock rate is scaled down by 1000
//
x = (1000.*prop.clockRate) * prop.multiProcessorCount * cores_per_proc * flops_per_clock;
} else if (opencl_prop.nv_compute_capability_major) {
// OpenCL w/ cl_nv_device_attribute_query extension
// Per: https://www.khronos.org/registry/cl/extensions/nv/cl_nv_device_attribute_query.txt
//
// The theoretical single-precision processing power of a Maxwell GPU in GFLOPS is computed as 2 (operations per FMA instruction per CUDA core per cycle) × number of CUDA cores × core clock speed (in GHz).
// Per: https://en.wikipedia.org/wiki/Maxwell_(microarchitecture)#Performance
// Per: https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units
//
// clock is in MHz
//
x = opencl_prop.max_compute_units * cores_per_proc * flops_per_clock * (opencl_prop.max_clock_frequency * 1e6);
} else if (opencl_prop.max_compute_units) {
// OpenCL doesn't give us compute capability.
// assume CC 2: cores_per_proc is 48 and flops_per_clock is 2
//
x = opencl_prop.max_compute_units * 48 * 2 * opencl_prop.max_clock_frequency * 1e6;
}
peak_flops = x;
}
// fake a NVIDIA GPU (for debugging)
//
void COPROC_NVIDIA::fake(
int driver_version, double ram, double avail_ram, int n
) {
static const COPROC_NVIDIA x;
*this = x;
safe_strcpy(type, proc_type_name_xml(PROC_TYPE_NVIDIA_GPU));
count = n;
for (int i=0; i\n"
" %d\n"
" %s\n"
" %f\n"
" %d\n"
" %d\n",
count,
name,
available_ram,
have_cal ? 1 : 0,
have_opencl ? 1 : 0
);
if (scheduler_rpc) {
write_request(f);
}
f.printf(
" %f\n"
" %s\n"
" %d\n"
" %d\n"
" %d\n"
" %d\n"
" %u\n"
" %d\n"
" %d\n"
" %d\n"
" %d\n"
" %d\n"
" %d\n"
" %d\n"
" %d\n"
" %d\n",
peak_flops,
version,
attribs.target,
attribs.localRAM,
attribs.uncachedRemoteRAM,
attribs.cachedRemoteRAM,
attribs.engineClock,
attribs.memoryClock,
attribs.wavefrontSize,
attribs.numberOfSIMD,
attribs.doublePrecision,
attribs.pitch_alignment,
attribs.surface_alignment,
info.maxResource1DWidth,
info.maxResource2DWidth,
info.maxResource2DHeight
);
if (atirt_detected) {
f.printf(" \n");
}
if (amdrt_detected) {
f.printf(" \n");
}
if (have_opencl) {
opencl_prop.write_xml(f, "coproc_opencl");
}
f.printf("\n");
}
#endif
void COPROC_ATI::clear() {
static const COPROC_ATI x(0);
*this = x;
safe_strcpy(type, proc_type_name_xml(PROC_TYPE_AMD_GPU));
estimated_delay = -1;
safe_strcpy(name, "");
safe_strcpy(version, "");
atirt_detected = false;
amdrt_detected = false;
version_num = 0;
is_used = COPROC_USED;
}
int COPROC_ATI::parse(XML_PARSER& xp) {
int n, retval;
clear();
while (!xp.get_tag()) {
if (xp.match_tag("/coproc_ati")) {
if (strlen(version)) {
int major, minor, release;
n = sscanf(version, "%d.%d.%d", &major, &minor, &release);
if (n ==3) {
version_num = ati_version_int(major, minor, release);
}
}
if (!peak_flops) {
set_peak_flops();
}
if (!available_ram) {
available_ram = attribs.localRAM*MEGA;
}
return 0;
}
if (xp.parse_int("count", count)) continue;
if (xp.parse_double("peak_flops", peak_flops)) continue;
if (xp.parse_bool("have_cal", have_cal)) continue;
if (xp.parse_bool("have_opencl", have_opencl)) continue;
if (xp.parse_double("available_ram", available_ram)) continue;
if (xp.parse_double("req_secs", req_secs)) continue;
if (xp.parse_double("req_instances", req_instances)) continue;
if (xp.parse_double("estimated_delay", estimated_delay)) continue;
if (xp.parse_str("name", name, sizeof(name))) continue;
if (xp.parse_str("CALVersion", version, sizeof(version))) continue;
if (xp.parse_bool("amdrt_detected", amdrt_detected)) continue;
if (xp.parse_bool("atirt_detected", atirt_detected)) continue;
if (xp.parse_int("target", n)) {
attribs.target = (CALtarget)n;
continue;
}
if (xp.parse_int("localRAM", n)) {
attribs.localRAM = n;
continue;
}
if (xp.parse_int("uncachedRemoteRAM", n)) {
attribs.uncachedRemoteRAM = n;
continue;
}
if (xp.parse_int("cachedRemoteRAM", n)) {
attribs.cachedRemoteRAM = n;
continue;
}
if (xp.parse_int("engineClock", n)) {
attribs.engineClock = n;
continue;
}
if (xp.parse_int("memoryClock", n)) {
attribs.memoryClock = n;
continue;
}
if (xp.parse_int("wavefrontSize", n)) {
attribs.wavefrontSize = n;
continue;
}
if (xp.parse_int("numberOfSIMD" , n)) {
attribs.numberOfSIMD = n;
continue;
}
if (xp.parse_int("doublePrecision", n)) {
attribs.doublePrecision = n?CAL_TRUE:CAL_FALSE;
continue;
}
if (xp.parse_int("pitch_alignment", n)) {
attribs.pitch_alignment = n;
continue;
}
if (xp.parse_int("surface_alignment", n)) {
attribs.surface_alignment = n;
continue;
}
if (xp.parse_int("maxResource1DWidth", n)) {
info.maxResource1DWidth = n;
continue;
}
if (xp.parse_int("maxResource2DWidth", n)) {
info.maxResource2DWidth = n;
continue;
}
if (xp.parse_int("maxResource2DHeight", n)) {
info.maxResource2DHeight = n;
continue;
}
if (xp.match_tag("coproc_opencl")) {
retval = opencl_prop.parse(xp, "/coproc_opencl");
if (retval) return retval;
continue;
}
}
return ERR_XML_PARSE;
}
void COPROC_ATI::description(char* buf, int buflen) {
snprintf(buf, buflen,
"%s (CAL version %s, %uMB, %.0fMB available, %.0f GFLOPS peak)",
name, version, attribs.localRAM,
available_ram/MEGA, peak_flops/1.e9
);
}
void COPROC_ATI::set_peak_flops() {
double x = 0;
if (attribs.numberOfSIMD) {
x = attribs.numberOfSIMD * attribs.wavefrontSize * 5 * attribs.engineClock * 1.e6;
// clock is in MHz
} else if (opencl_prop.amd_simd_per_compute_unit) {
// OpenCL w/ cl_amd_device_attribute_query extension
// Per: https://www.khronos.org/registry/cl/extensions/amd/cl_amd_device_attribute_query.txt
//
// Single precision performance is calculated as two times the number of shaders multiplied by the base core clock speed.
// Per: https://en.wikipedia.org/wiki/List_of_AMD_graphics_processing_units
//
// clock is in MHz
x = opencl_prop.max_compute_units *
opencl_prop.amd_simd_per_compute_unit *
opencl_prop.amd_simd_width *
opencl_prop.amd_simd_instruction_width *
2 *
(opencl_prop.max_clock_frequency * 1.e6);
} else if (opencl_prop.max_compute_units) {
// OpenCL gives us only:
// - max_compute_units
// (which I'll assume is the same as attribs.numberOfSIMD)
// - max_clock_frequency (which I'll assume is the same as engineClock)
// It doesn't give wavefrontSize, which can be 16/32/64.
// So let's be conservative and use 16
//
x = opencl_prop.max_compute_units * 16 * 5 * opencl_prop.max_clock_frequency * 1e6;
}
peak_flops = x;
}
void COPROC_ATI::fake(double ram, double avail_ram, int n) {
clear();
safe_strcpy(type, proc_type_name_xml(PROC_TYPE_AMD_GPU));
safe_strcpy(version, "1.4.3");
safe_strcpy(name, "foobar");
count = n;
available_ram = avail_ram;
have_cal = true;
attribs.localRAM = (int)(ram/MEGA);
attribs.numberOfSIMD = 32;
attribs.wavefrontSize = 32;
attribs.engineClock = 50;
for (int i=0; i\n"
" %d\n"
" %s\n"
" %f\n"
" %d\n",
count,
name,
available_ram,
have_opencl ? 1 : 0
);
if (scheduler_rpc) {
write_request(f);
}
f.printf(
" %f\n"
" %s\n",
peak_flops,
version
);
if (have_opencl) {
opencl_prop.write_xml(f, "coproc_opencl");
}
f.printf("\n");
}
#endif
void COPROC_INTEL::clear() {
static const COPROC_INTEL x(0);
*this = x;
safe_strcpy(type, proc_type_name_xml(PROC_TYPE_INTEL_GPU));
estimated_delay = -1;
safe_strcpy(name, "");
safe_strcpy(version, "");
global_mem_size = 0;
is_used = COPROC_USED;
}
int COPROC_INTEL::parse(XML_PARSER& xp) {
int retval;
clear();
while (!xp.get_tag()) {
if (xp.match_tag("/coproc_intel_gpu")) {
if (!peak_flops) {
set_peak_flops();
}
if (!available_ram) {
available_ram = opencl_prop.global_mem_size;
}
return 0;
}
if (xp.parse_int("count", count)) continue;
if (xp.parse_double("peak_flops", peak_flops)) continue;
if (xp.parse_bool("have_opencl", have_opencl)) continue;
if (xp.parse_double("available_ram", available_ram)) continue;
if (xp.parse_double("req_secs", req_secs)) continue;
if (xp.parse_double("req_instances", req_instances)) continue;
if (xp.parse_double("estimated_delay", estimated_delay)) continue;
if (xp.parse_str("name", name, sizeof(name))) continue;
if (xp.parse_str("version", version, sizeof(version))) continue;
if (xp.match_tag("coproc_opencl")) {
retval = opencl_prop.parse(xp, "/coproc_opencl");
if (retval) return retval;
continue;
}
}
return ERR_XML_PARSE;
}
// http://en.wikipedia.org/wiki/Comparison_of_Intel_graphics_processing_units says:
// The raw performance of integrated GPU, in single-precision FLOPS,
// can be calculated as follows:
// EU * 4 [dual-issue x 2 SP] * 2 [multiply + accumulate] * clock speed.
//
// However, there is some question of the accuracy of this due to Intel's
// Turbo Boost and Dynamic Frequency technologies.
//
void COPROC_INTEL::set_peak_flops() {
double x = 0;
if (opencl_prop.max_compute_units) {
x = opencl_prop.max_compute_units * 8 * opencl_prop.max_clock_frequency * 1e6;
}
peak_flops = x;
}
void COPROC_INTEL::fake(double ram, double avail_ram, int n) {
safe_strcpy(type, proc_type_name_xml(PROC_TYPE_INTEL_GPU));
safe_strcpy(version, "1.4.3");
safe_strcpy(name, "foobar");
count = n;
available_ram = avail_ram;
have_opencl = true;
for (int i=0; i
// xxx
//
// Don't confuse this with the element names used for GPUS within ,
// namely:
// coproc_cuda
// coproc_ati
// coproc_intel_gpu
//
const char* proc_type_name_xml(int pt) {
switch(pt) {
case PROC_TYPE_CPU: return "CPU";
case PROC_TYPE_NVIDIA_GPU: return "NVIDIA";
case PROC_TYPE_AMD_GPU: return "ATI";
case PROC_TYPE_INTEL_GPU: return "intel_gpu";
case PROC_TYPE_MINER_ASIC: return "miner_asic";
}
return "unknown";
}
const char* proc_type_name(int pt) {
switch(pt) {
case PROC_TYPE_CPU: return "CPU";
case PROC_TYPE_NVIDIA_GPU: return "NVIDIA GPU";
case PROC_TYPE_AMD_GPU: return "AMD/ATI GPU";
case PROC_TYPE_INTEL_GPU: return "Intel GPU";
case PROC_TYPE_MINER_ASIC: return "Miner ASIC";
}
return "unknown";
}
int coproc_type_name_to_num(const char* name) {
if (!strcmp(name, "CUDA")) return PROC_TYPE_NVIDIA_GPU;
if (!strcmp(name, "NVIDIA")) return PROC_TYPE_NVIDIA_GPU;
if (!strcmp(name, "ATI")) return PROC_TYPE_AMD_GPU;
if (!strcmp(name, "intel_gpu")) return PROC_TYPE_INTEL_GPU;
if (!strcmp(name, "miner_asic")) return PROC_TYPE_MINER_ASIC;
return -1; // Some other type
}