// This file is part of BOINC. // http://boinc.berkeley.edu // Copyright (C) 2008 University of California // // BOINC is free software; you can redistribute it and/or modify it // under the terms of the GNU Lesser General Public License // as published by the Free Software Foundation, // either version 3 of the License, or (at your option) any later version. // // BOINC is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. // See the GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with BOINC. If not, see . /* * QMachOImageList.c * */ /* This is part of a backtrace generator for boinc project applications. * * Adapted from Apple Developer Technical Support Sample Code QCrashReport * * This code handles Mac OS X 10.3.x through 10.4.9. It may require some * adjustment for future OS versions; see the discussion of _sigtramp and * PowerPC Signal Stack Frames in file QBacktrace.c. * * For useful tips on using backtrace information, see Apple Tech Note 2123: * http://developer.apple.com/technotes/tn2004/tn2123.html#SECNOSYMBOLS * * To convert addresses to correct symbols, use the atos command-line tool: * atos -o path/to/executable/with/symbols address * Note: if address 1a23 is hex, use 0x1a23. * * To demangle mangled C++ symbols, use the c++filt command-line tool. * You may need to prefix C++ symbols with an additonal underscore before * passing them to c++filt (so they begin with two underscore characters). * * A very useful shell script to add symbols to a crash dump can be found at: * http://developer.apple.com/tools/xcode/symbolizingcrashdumps.html * Pipe the output of the shell script through c++filt to demangle C++ symbols. */ /* File: QMachOImageList.c Contains: Code to get all Mach-O images within a task. Written by: DTS Copyright: Copyright (c) 2007 Apple Inc. All Rights Reserved. Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple Inc. ("Apple") in consideration of your agreement to the following terms, and your use, installation, modification or redistribution of this Apple software constitutes acceptance of these terms. If you do not agree with these terms, please do not use, install, modify or redistribute this Apple software. In consideration of your agreement to abide by the following terms, and subject to these terms, Apple grants you a personal, non-exclusive license, under Apple's copyrights in this original Apple software (the "Apple Software"), to use, reproduce, modify and redistribute the Apple Software, with or without modifications, in source and/or binary forms; provided that if you redistribute the Apple Software in its entirety and without modifications, you must retain this notice and the following text and disclaimers in all such redistributions of the Apple Software. Neither the name, trademarks, service marks or logos of Apple Inc. may be used to endorse or promote products derived from the Apple Software without specific prior written permission from Apple. Except as expressly stated in this notice, no other rights or licenses, express or implied, are granted by Apple herein, including but not limited to any patent rights that may be infringed by your derivative works or by other works in which the Apple Software may be incorporated. The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION ALONE OR IN COMBINATION WITH YOUR PRODUCTS. IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ARISING IN ANY WAY OUT OF THE USE, REPRODUCTION, MODIFICATION AND/OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER UNDER THEORY OF CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, EVEN IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Change History (most recent first): $Log: QMachOImageList.c,v $ Revision 1.1 2007/03/02 12:20:22 First checked in. */ ///////////////////////////////////////////////////////////////// // Our prototypes #include "QMachOImageList.h" // System interfaces #include //#include #include #include #include #include #include #undef assert #undef __assert #define assert(e) ((void)0) #include #include // Scary Darwin-derived header file for dyld. #include "dyld_gdb.h" ///////////////////////////////////////////////////////////////// #pragma mark ***** New Technique static int ImageListForTaskNew( task_t task, QMOImageRef dyldImage, QTMAddr allImageInfoAddr, QMOImageRef * imageArray, size_t imageArraySize, size_t * imageCountPtr ) // The new interface is fairly straightforward: there's a single symbol // ("dyld_all_image_infos", which has already been looked up by our caller, // and whose address (in the remote task) is passed to us in allImageInfoAddr) // that contains a simple data structure that describes all of the images. // That data structure is defined by (struct dyld_all_image_infos) (see // "dyld_gdb.h"); it, in turn, contains a pointer to an array of structures // (struct dyld_image_info) for each image. // // Given the task, a dyld image, and the address of the // "dyld_all_image_infos" structure within that task, this routine returns // an array of images within that task (in the buffer specified by imageArray, // if it's not NULL, and imageArraySize), and a count of those images // (in *imageCountPtr). // // On entry, task must not be MACH_PORT_NULL // On entry, dyldImage must not be NULL // On entry, allImageInfoAddr must be the address of "dyld_all_image_infos" // within the task, which shouldn't be NULL // On entry, imageCountPtr must not be NULL // On entry, *imageCountPtr is ignored // On entry, if imageArray is NULL, imageArraySize must be 0 // On entry, if imageArray is not NULL, imageArraySize must be the number of // elements available in imageArray // On success, if imageArray is not NULL, up to imageArraySize image objects // are returned in the array // On success, *imageCountPtr is the number of images in the task; this may // be larger than imageArraySize, in which case the imageArray wasn't big // enough and the returned value tells you how big it needs to be { int err; struct dyld_all_image_infos allImageInfo; uint32_t infoCount = 0; uint32_t infoIndex; QTMAddr infoArrayAddr; size_t infoArraySize; const void * infoArrayLocal; assert(task != MACH_PORT_NULL); assert(dyldImage != NULL); assert(allImageInfoAddr != 0); // very unlikely for dyld_all_image_infos to be at 0 assert( (imageArray != NULL) || (imageArraySize == 0) ); assert(imageCountPtr != NULL); infoArrayLocal = NULL; infoArraySize = 0; // quieten a warning // Read the value of the dyld_all_image_infos structure. err = QTMRead(task, allImageInfoAddr, sizeof(allImageInfo), &allImageInfo); // Bletch. The layout of (struct dyld_all_image_infos) varies with the pointer // size of the architecture. As we can't guarantee that the remote architecture // is compatible with our local pointer size, we have to be very careful about // the fields that we access within dyld_all_image_infos. It turns out that we // only care about the "version", "infoArrayCount", and "infoArray" fields, and // only the last one varies by pointer size, so this all works; but it's // hardly nice. if ( (err == 0) && (QMOImageToLocalUInt32(dyldImage, allImageInfo.version) != 1) ) { err = ESHLIBVERS; } if (err == 0) { infoCount = QMOImageToLocalUInt32(dyldImage, allImageInfo.infoArrayCount); if ( QMOImageIs64Bit(dyldImage) ) { infoArrayAddr = QMOImageToLocalUInt64(dyldImage, *(uint64_t *) &allImageInfo.infoArray); infoArraySize = infoCount * sizeof(uint64_t) * 3; } else { infoArrayAddr = QMOImageToLocalUInt32(dyldImage, *(uint32_t *) &allImageInfo.infoArray); infoArraySize = infoCount * sizeof(uint32_t) * 3; } // Read in the array of per-image structures. err = QTMReadAllocated(task, infoArrayAddr, infoArraySize, &infoArrayLocal); } // Process the array of per-image structures, using the relevant information // to create our output. Again, the size of these fields vary per architecture. if (err == 0) { *imageCountPtr = infoCount; if (imageArray != NULL) { bool is64Bit; is64Bit = QMOImageIs64Bit(dyldImage); for (infoIndex = 0; infoIndex < infoCount; infoIndex++) { if (infoIndex < imageArraySize) { QTMAddr machHeader; QTMAddr filePathAddr; char filePath[PATH_MAX]; if (is64Bit) { machHeader = QMOImageToLocalUInt64(dyldImage, ((uint64_t *) infoArrayLocal)[infoIndex * 3] ); filePathAddr = QMOImageToLocalUInt64(dyldImage, ((uint64_t *) infoArrayLocal)[infoIndex * 3 + 1] ); } else { machHeader = QMOImageToLocalUInt32(dyldImage, ((uint32_t *) infoArrayLocal)[infoIndex * 3] ); filePathAddr = QMOImageToLocalUInt32(dyldImage, ((uint32_t *) infoArrayLocal)[infoIndex * 3 + 1] ); } err = QTMRead(task, filePathAddr, sizeof(filePath), filePath); if (err == 0) { filePath[sizeof(filePath) - 1] = 0; // guarantee NULL termination err = QMOImageCreateFromTask(task, machHeader, filePath, &imageArray[infoIndex]); } if (err != 0) { break; } } } } } // Clean up. QTMFree(infoArrayLocal, infoArraySize); return err; } ///////////////////////////////////////////////////////////////// #pragma mark ***** Old Technique static int ImageListForTaskOldWithNames( task_t task, QMOImageRef dyldImage, const char * listHeadName, const char * elemCountName, const char * elemSizeName, QMOImageRef * imageArray, size_t imageArraySize, size_t * imageCountPtr ) // The old interface is quite strange. dyld declares a global variable // (whose name is given by listHeadName, for example, "library_images") // that contains elemCount elements, each of elemSize bytes. The values // of elemCount and elemSize are exported in global variables, each // of which is a uint32_t. The names of these variables are also supplied // as parameters to this routine (elemCountName and elemSizeName, for example, // "gdb_nlibrary_images" and "gdb_library_image_size", respectively). // Finally, at the end of this block of elements is a count of the number // of elements in the block ("nimages") followed by a pointer to the // next block of elements ("next_images"). // // Within an element, there are only three fields that interest us: // // o "valid" (offset 12, size 4) -- Non-zero if this element is valid. // o "mh" (offset 8, size 4) -- A pointer to the mach_header for this // image. // o "physical_name" (offset 0, size 4) -- A pointer to the file path for the // on disk storage, if any. // // On entry, task must not be MACH_PORT_NULL // On entry, dyldImage must not be NULL // On entry, listHeadName, elemCountName, and elemSizeName must all not be NULL // On entry, imageCountPtr must not be NULL // On entry, *imageCountPtr is NOT ignored; rather, this routine assumes that // imageArray already has *imageCountPtr elements filled in, and starts putting // new elements at *imageCountPtr // On entry, if imageArray is NULL, imageArraySize must be 0 // On entry, if imageArray is not NULL, imageArraySize must be the number of // elements available in imageArray // On success, if imageArray is not NULL, up to imageArraySize image objects // are returned in the array, starting at the position specified by the // original value of *imageCountPtr // On success, *imageCountPtr is incremented by the number of images that were // found; this may end up making it larger than imageArraySize, in which case the // imageArray wasn't big enough and the returned value tells you how big // it needs to be { int err; QTMAddr listChunkAddr; QTMAddr elemSizeAddr; QTMAddr elemCountAddr; uint32_t elemCount = 0; uint32_t elemSize = 0; size_t listChunkSize; enum { // constants related to the array elements kValidOffset = 12, // offset to "valid" field kMHOffset = 8, // offset to "mh" field kPhysicalNameOffset = 0 // offset to "physical_name" field }; enum { // constants related to data after array kNImagesOffset = 0, // offset to "nimages" field kNextImagesOffset = 4, // offset to next_images field kBlockSuffixSize = 8, // total size of trailing block }; // The old-style interface is not present in 64-bit tasks. assert( ! QMOImageIs64Bit(dyldImage) ); assert(task != MACH_PORT_NULL); assert(dyldImage != NULL); assert(listHeadName != NULL); assert(elemCountName != NULL); assert(elemSizeName != NULL); assert( (imageArray != NULL) || (imageArraySize == 0) ); assert(imageCountPtr != NULL); // Look up each of the symbols. err = QMOImageLookupSymbol(dyldImage, listHeadName, &listChunkAddr); if (err == 0) { err = QMOImageLookupSymbol(dyldImage, elemCountName, &elemCountAddr); } if (err == 0) { err = QMOImageLookupSymbol(dyldImage, elemSizeName, &elemSizeAddr); } // Read the elemCount and elemSize values. if (err == 0) { err = QTMRead(task, elemCountAddr, sizeof(elemCount), &elemCount); } if (err == 0) { err = QTMRead(task, elemSizeAddr, sizeof(elemSize), &elemSize); } // Read the image data, one chunk at a time. if (err == 0) { elemCount = QMOImageToLocalUInt32(dyldImage, elemCount); elemSize = QMOImageToLocalUInt32(dyldImage, elemSize); listChunkSize = elemCount * elemSize + kBlockSuffixSize; do { const char * listChunk; uint32_t elemCountInThisBlock; uint32_t elemIndex; listChunk = NULL; // Read a copy of this chunk of the list. err = QTMReadAllocated(task, listChunkAddr, listChunkSize, (const void **) &listChunk); if (err == 0) { elemCountInThisBlock = QMOImageToLocalUInt32(dyldImage, *(uint32_t *) (listChunk + elemCount * elemSize + kNImagesOffset) ); // Process each element in the chunk. If the element is valid, place // the image into the output array (if there's size) for (elemIndex = 0; elemIndex < elemCountInThisBlock; elemIndex++) { if ( QMOImageToLocalUInt32(dyldImage, *(uint32_t *) (listChunk + elemIndex * elemSize + kValidOffset)) != 0 ) { if ( (imageArray != NULL) && (*imageCountPtr < imageArraySize) ) { QTMAddr machHeader; QTMAddr filePathAddr; char filePath[PATH_MAX]; machHeader = QMOImageToLocalUInt32(dyldImage, *(uint32_t *) (listChunk + elemIndex * elemSize + kMHOffset )); filePathAddr = QMOImageToLocalUInt32(dyldImage, *(uint32_t *) (listChunk + elemIndex * elemSize + kPhysicalNameOffset)); err = QTMRead(task, filePathAddr, sizeof(filePath), filePath); if (err == 0) { filePath[sizeof(filePath) - 1] = 0; // guarantee NULL termination err = QMOImageCreateFromTask(task, machHeader, filePath, &imageArray[*imageCountPtr]); } } *imageCountPtr += 1; if (err != 0) { break; } } } } // Move on to the next chunk. if (err == 0) { listChunkAddr = QMOImageToLocalUInt32(dyldImage, *(uint32_t *) (listChunk + elemCount * elemSize + kNextImagesOffset) ); } QTMFree(listChunk, listChunkSize); } while ( (err == 0) && (listChunkAddr != 0) ); } return err; } static int ImageListForTaskOld( task_t task, QMOImageRef dyldImage, QMOImageRef * imageArray, size_t imageArraySize, size_t * imageCountPtr ) // Returns information about the prepared Mach-O images in a task // using the old (pre-10.4) interface. See ImageListForTaskOldWithNames // for a discussion of the mechanics of this. // // On entry, task must not be MACH_PORT_NULL // On entry, dyldImage must not be NULL // On entry, imageCountPtr must not be NULL // On entry, *imageCountPtr is ignored // On entry, if imageArray is NULL, imageArraySize must be 0 // On entry, if imageArray is not NULL, imageArraySize must be the number of // elements available in imageArray // On success, if imageArray is not NULL, up to imageArraySize image objects // are returned in the array // On success, *imageCountPtr is the number of images in the task; this may // be larger than imageArraySize, in which case the imageArray wasn't big // enough and the returned value tells you how big it needs to be { int err; assert(task != MACH_PORT_NULL); assert(dyldImage != NULL); assert( (imageArray != NULL) || (imageArraySize == 0) ); assert(imageCountPtr != NULL); // The old-style interface is only used for 32-bit. assert( ! QMOImageIs64Bit(dyldImage) ); // The old interface makes a (strange) distinction between // 'library' images and 'object' images. To avoid unnecessary // code duplication I've factored this out into a subroutine // that I call twice. *imageCountPtr = 0; err = ImageListForTaskOldWithNames( task, dyldImage, "_library_images", "_gdb_nlibrary_images", "_gdb_library_image_size", imageArray, imageArraySize, imageCountPtr ); if (err == 0) { err = ImageListForTaskOldWithNames( task, dyldImage, "_object_images", "_gdb_nobject_images", "_gdb_object_image_size", imageArray, imageArraySize, imageCountPtr ); } return err; } ///////////////////////////////////////////////////////////////// #pragma mark ***** Exported Abstraction Layer static int SortByMachHeader(const void *lhs, const void *rhs) { QTMAddr lhsAddr; QTMAddr rhsAddr; lhsAddr = QMOImageGetMachHeaderOffset(*((QMOImageRef *) lhs)); rhsAddr = QMOImageGetMachHeaderOffset(*((QMOImageRef *) rhs)); // Can't do this using the standard (lhsAddr - rhsAddr) trick because the // difference can be so big that it overflows an int, which is the type of // the return value. if (lhsAddr < rhsAddr) { return -1; } else if (lhsAddr > rhsAddr) { return +1; } else { return 0; } } extern void QMOImageListDestroy(QMOImageRef *imageArray, size_t imageArrayCount) // See comments in header. { uint32_t imageIndex; assert( (imageArray != NULL) || (imageArrayCount == 0) ); if (imageArray != NULL) { for (imageIndex = 0; imageIndex < imageArrayCount; imageIndex++) { QMOImageDestroy(imageArray[imageIndex]); imageArray[imageIndex] = NULL; } } } bool kQMachOImageListTestOldDyldOnNew = false; // By changing this variable you can test the old code when looking // at a new dyld. For compatibility reasons, the new dyld continues // to support the old interface (at least for 32-bit PowerPC), so this // makes it possible to test the old code on 10.4, which makes life a lot // easier. // // This is exported for the benefit of the unit test. bool kQMachOImageListTestSelfShortCircuit = true; // By changing this variable to false you can disable the short circuit that // we apply when targetting the local task. // // This is exported for the benefit of the unit test. extern int QMOImageListFromSelf( QMOImageRef * imageArray, size_t imageArrayCount, size_t * imageCountPtr ) // See comments in header. { int err; uint32_t imageIndex; assert( (imageArray != NULL) || (imageArrayCount == 0) ); assert(imageCountPtr != NULL); // Blast the output array to NULL to aid in error recovery. if (imageArray != NULL) { memset(imageArray, 0, imageArrayCount * sizeof(*imageArray)); } // Do the job. err = 0; *imageCountPtr = _dyld_image_count(); for (imageIndex = 0; imageIndex < *imageCountPtr; imageIndex++) { if ( (imageArray != NULL) && (imageIndex < imageArrayCount) ) { const struct mach_header * machHeader; const char * filePath; machHeader = _dyld_get_image_header(imageIndex); filePath = _dyld_get_image_name(imageIndex); // fprintf(stderr, "filePath = %s\n", filePath); err = QMOImageCreateFromLocalImage(machHeader, filePath, &imageArray[imageIndex]); if (err != 0) { break; } } } if ( (err == 0) && (imageArray != NULL) ) { qsort(imageArray, MIN(imageArrayCount, *imageCountPtr), sizeof(*imageArray), SortByMachHeader); } // On error, destroy any partial results. if (err != 0) { QMOImageListDestroy(imageArray, imageArrayCount); } return err; } extern int QMOImageListFromTask( task_t task, cpu_type_t cputype, QMOImageRef * imageArray, size_t imageArrayCount, size_t * imageCountPtr ) // See comments in header. { int err; assert(task != MACH_PORT_NULL); assert( (imageArray != NULL) || (imageArrayCount == 0) ); assert(imageCountPtr != NULL); if ( (task == mach_task_self()) && (cputype == QMOGetLocalCPUType()) && kQMachOImageListTestSelfShortCircuit ) { err = QMOImageListFromSelf(imageArray, imageArrayCount, imageCountPtr); } else { QMOImageRef dyldImage; QTMAddr allImageInfoAddr; // Blast the output array to NULL to aid in error recovery. if (imageArray != NULL) { memset(imageArray, 0, imageArrayCount * sizeof(*imageArray)); } dyldImage = NULL; // The information about the prepared images within a task is published // in various global variables exported by dyld. So, to start off, we // have to find the address of dyld in the remote task and then create // an QMOImage for it. err = QMOImageCreateFromTaskDyld(task, cputype, &dyldImage); // Now we look for the dyld_all_image_infos variable exported by dyld. // If it exists, we looking at a new dyld (10.4 and later), and we use // the new mechanism for finding the prepared images. If it's not present, // we're looking at an old dyld and we use the old mechanism. if (err == 0) { err = QMOImageLookupSymbol(dyldImage, "_dyld_all_image_infos", &allImageInfoAddr); if ( ! kQMachOImageListTestOldDyldOnNew && (err == 0) ) { err = ImageListForTaskNew(task, dyldImage, allImageInfoAddr, imageArray, imageArrayCount, imageCountPtr); } else { err = ImageListForTaskOld(task, dyldImage, imageArray, imageArrayCount, imageCountPtr); } } if ( (err == 0) && (imageArray != NULL) ) { qsort(imageArray, MIN(imageArrayCount, *imageCountPtr), sizeof(*imageArray), SortByMachHeader); } // Clean up. QMOImageDestroy(dyldImage); // On error, destroy any partial results. if (err != 0) { QMOImageListDestroy(imageArray, imageArrayCount); } } return err; }