// This file is part of BOINC.
// http://boinc.berkeley.edu
// Copyright (C) 2008 University of California
//
// BOINC is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License
// as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// BOINC is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with BOINC. If not, see .
// scheduler code related to sending jobs.
// NOTE: there should be nothing here specific to particular
// scheduling policies (array scan, matchmaking, locality)
#include "config.h"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "error_numbers.h"
#include "parse.h"
#include "util.h"
#include "str_util.h"
#include "synch.h"
#include "credit.h"
#include "hr.h"
#include "sched_array.h"
#include "sched_assign.h"
#include "sched_config.h"
#include "sched_customize.h"
#include "sched_hr.h"
#include "sched_locality.h"
#include "sched_main.h"
#include "sched_msgs.h"
#include "sched_nci.h"
#include "sched_shmem.h"
#include "sched_score.h"
#include "sched_timezone.h"
#include "sched_types.h"
#include "sched_util.h"
#include "sched_version.h"
#include "sched_send.h"
#ifdef _USING_FCGI_
#include "boinc_fcgi.h"
#endif
// if host sends us an impossible RAM size, use this instead
//
const double DEFAULT_RAM_SIZE = 64000000;
int preferred_app_message_index=0;
static inline bool file_present_on_host(const char* name) {
for (unsigned i=0; ifile_infos.size(); i++) {
FILE_INFO& fi = g_request->file_infos[i];
if (!strstr(name, fi.name)) {
return true;
}
}
return false;
}
// return the number of sticky files present on host, used by job
//
int nfiles_on_host(WORKUNIT& wu) {
MIOFILE mf;
mf.init_buf_read(wu.xml_doc);
XML_PARSER xp(&mf);
int n=0;
while (!xp.get_tag()) {
if (xp.match_tag("file_info")) {
FILE_INFO fi;
int retval = fi.parse(xp);
if (retval) continue;
if (!fi.sticky) continue;
if (file_present_on_host(fi.name)) {
n++;
}
}
}
return n;
}
// we're going to send the client this job,
// and the app uses locality scheduling lite.
// Add the job's sticky files to the list of files present on host.
//
void add_job_files_to_host(WORKUNIT& wu) {
MIOFILE mf;
mf.init_buf_read(wu.xml_doc);
XML_PARSER xp(&mf);
while (!xp.get_tag()) {
if (xp.match_tag("file_info")) {
FILE_INFO fi;
int retval = fi.parse(xp);
if (retval) continue;
if (!fi.sticky) continue;
if (!file_present_on_host(fi.name)) {
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] Adding file %s to host file list\n", fi.name
);
}
g_request->file_infos.push_back(fi);
}
}
}
}
const double MIN_REQ_SECS = 0;
const double MAX_REQ_SECS = (28*SECONDS_IN_DAY);
// get limits on:
// # jobs per day
// # jobs per RPC
// # jobs in progress
//
void WORK_REQ_BASE::get_job_limits() {
int ninstances[NPROC_TYPES];
int i;
memset(ninstances, 0, sizeof(ninstances));
int n;
n = g_reply->host.p_ncpus;
if (g_request->global_prefs.max_ncpus_pct && g_request->global_prefs.max_ncpus_pct < 100) {
n = (int)((n*g_request->global_prefs.max_ncpus_pct)/100.);
}
if (n > config.max_ncpus) n = config.max_ncpus;
if (n < 1) n = 1;
if (n > MAX_CPUS) n = MAX_CPUS;
ninstances[PROC_TYPE_CPU] = n;
effective_ncpus = n;
effective_ngpus = 0;
for (i=1; icoprocs.n_rsc; i++) {
COPROC& cp = g_request->coprocs.coprocs[i];
int proc_type = coproc_type_name_to_num(cp.type);
if (proc_type < 0) continue;
n = cp.count;
if (n > MAX_GPUS) n = MAX_GPUS;
ninstances[proc_type] = n;
effective_ngpus += n;
}
int mult = effective_ncpus + config.gpu_multiplier * effective_ngpus;
if (config.non_cpu_intensive) {
mult = 1;
ninstances[0] = 1;
if (effective_ngpus) effective_ngpus = 1;
}
if (config.max_wus_to_send) {
g_wreq->max_jobs_per_rpc = mult * config.max_wus_to_send;
} else {
g_wreq->max_jobs_per_rpc = 999999;
}
if (config.debug_quota) {
log_messages.printf(MSG_NORMAL,
"[quota] effective ncpus %d ngpus %d\n",
effective_ncpus, effective_ngpus
);
}
config.max_jobs_in_progress.reset(ninstances);
}
const char* find_user_friendly_name(int appid) {
APP* app = ssp->lookup_app(appid);
if (app) return app->user_friendly_name;
return "deprecated application";
}
static void update_quota(DB_HOST_APP_VERSION& hav) {
if (config.daily_result_quota) {
if (hav.max_jobs_per_day == 0) {
hav.max_jobs_per_day = config.daily_result_quota;
if (config.debug_quota) {
log_messages.printf(MSG_NORMAL,
"[quota] [HAV#%lu] Initializing max_results_day to %d\n",
hav.app_version_id,
config.daily_result_quota
);
}
}
}
if (g_request->last_rpc_dayofyear != g_request->current_rpc_dayofyear) {
if (config.debug_quota) {
log_messages.printf(MSG_NORMAL,
"[quota] [HOST#%lu] [HAV#%lu] Resetting n_jobs_today\n",
g_reply->host.id, hav.app_version_id
);
}
hav.n_jobs_today = 0;
}
}
// see how much RAM we can use on this machine
//
static inline void get_mem_sizes() {
g_wreq->ram = g_reply->host.m_nbytes;
if (g_wreq->ram <= 0) g_wreq->ram = DEFAULT_RAM_SIZE;
g_wreq->usable_ram = g_wreq->ram;
double busy_frac = g_request->global_prefs.ram_max_used_busy_frac;
double idle_frac = g_request->global_prefs.ram_max_used_idle_frac;
double frac = 1;
if (busy_frac>0 && idle_frac>0) {
frac = std::max(busy_frac, idle_frac);
if (frac > 1) frac = 1;
g_wreq->usable_ram *= frac;
}
}
// Decide whether or not this app version is 'reliable'
// An app version is reliable if the following conditions are true
// (for those that are set in the config file)
// 1) The host average turnaround is less than a threshold
// 2) consecutive_valid is above a threshold
// 3) The host results per day is equal to the max value
//
void get_reliability_version(HOST_APP_VERSION& hav, double multiplier) {
if (hav.turnaround.n > MIN_HOST_SAMPLES && config.reliable_max_avg_turnaround) {
if (hav.turnaround.get_avg() > config.reliable_max_avg_turnaround*multiplier) {
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] [AV#%lu] not reliable; avg turnaround: %.3f > %.3f hrs\n",
hav.app_version_id,
hav.turnaround.get_avg()/3600,
config.reliable_max_avg_turnaround*multiplier/3600
);
}
hav.reliable = false;
return;
}
}
if (hav.consecutive_valid < CONS_VALID_RELIABLE) {
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] [AV#%lu] not reliable; cons valid %d < %d\n",
hav.app_version_id,
hav.consecutive_valid, CONS_VALID_RELIABLE
);
}
hav.reliable = false;
return;
}
if (config.daily_result_quota) {
if (hav.max_jobs_per_day < config.daily_result_quota) {
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] [AV#%lu] not reliable; max_jobs_per_day %d<%d\n",
hav.app_version_id,
hav.max_jobs_per_day,
config.daily_result_quota
);
}
hav.reliable = false;
return;
}
}
hav.reliable = true;
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] [HOST#%lu] app version %lu is reliable\n",
g_reply->host.id, hav.app_version_id
);
}
g_wreq->has_reliable_version = true;
}
// decide whether do unreplicated jobs with this app version
//
static void set_trust(DB_HOST_APP_VERSION& hav) {
hav.trusted = false;
if (hav.consecutive_valid < CONS_VALID_UNREPLICATED) {
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] set_trust: cons valid %d < %d, don't use single replication\n",
hav.consecutive_valid, CONS_VALID_UNREPLICATED
);
}
return;
}
double x = 1./hav.consecutive_valid;
if (drand() > x) hav.trusted = true;
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] set_trust: random choice for cons valid %d: %s\n",
hav.consecutive_valid, hav.trusted?"yes":"no"
);
}
}
static void get_reliability_and_trust() {
// Platforms other than Windows, Linux and Intel Macs need a
// larger set of computers to be marked reliable
//
double multiplier = 1.0;
if (strstr(g_reply->host.os_name,"Windows")
|| strstr(g_reply->host.os_name,"Linux")
|| (strstr(g_reply->host.os_name,"Darwin")
&& !(strstr(g_reply->host.p_vendor,"Power Macintosh"))
)) {
multiplier = 1.0;
} else {
multiplier = 1.8;
}
for (unsigned int i=0; ihost_app_versions.size(); i++) {
DB_HOST_APP_VERSION& hav = g_wreq->host_app_versions[i];
get_reliability_version(hav, multiplier);
set_trust(hav);
}
}
// Compute the max additional disk usage we can impose on the host.
// Depending on the client version, it can either send us
// - d_total and d_free (pre 4 oct 2005)
// - the above plus d_boinc_used_total and d_boinc_used_project
//
double max_allowable_disk() {
HOST host = g_request->host;
GLOBAL_PREFS prefs = g_request->global_prefs;
double x1, x2, x3, x;
// defaults are from config.xml
// if not there these are used:
// -default_max_used_gb= 100
// -default_max_used_pct = 50
// -default_min_free_gb = .001
//
if (prefs.disk_max_used_gb == 0) {
prefs.disk_max_used_gb = config.default_disk_max_used_gb;
}
if (prefs.disk_max_used_pct == 0) {
prefs.disk_max_used_pct = config.default_disk_max_used_pct;
}
if (prefs.disk_min_free_gb < config.default_disk_min_free_gb) {
prefs.disk_min_free_gb = config.default_disk_min_free_gb;
}
// no defaults for total/free disk space (host.d_total, d_free)
// if they're zero, client will get no work.
//
if (host.d_boinc_used_total) {
// The post 4 oct 2005 case.
// Compute the max allowable additional disk usage based on prefs
//
x1 = prefs.disk_max_used_gb*GIGA - host.d_boinc_used_total;
x2 = host.d_total * prefs.disk_max_used_pct / 100.0
- host.d_boinc_used_total;
x3 = host.d_free - prefs.disk_min_free_gb*GIGA; // may be negative
x = std::min(x1, std::min(x2, x3));
// see which bound is the most stringent
//
if (x==x1) {
g_reply->disk_limits.max_used = x;
} else if (x==x2) {
g_reply->disk_limits.max_frac = x;
} else {
g_reply->disk_limits.min_free = x;
}
} else {
// here we don't know how much space BOINC is using.
// so we're kinda screwed.
// All we can do is assume that BOINC is using zero space.
// We can't honor the max_used for max_used_pct preferences.
// We can only honor the min_free pref.
//
x = host.d_free - prefs.disk_min_free_gb*GIGA; // may be negative
g_reply->disk_limits.min_free = x;
x1 = x2 = x3 = 0;
}
if (x < 0) {
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] No disk space available: disk_max_used_gb %.2fGB disk_max_used_pct %.2f disk_min_free_gb %.2fGB\n",
prefs.disk_max_used_gb,
prefs.disk_max_used_pct,
prefs.disk_min_free_gb
);
log_messages.printf(MSG_NORMAL,
"[send] No disk space available: host.d_total %.2fGB host.d_free %.2fGB host.d_boinc_used_total %.2fGB\n",
host.d_total/GIGA,
host.d_free/GIGA,
host.d_boinc_used_total/GIGA
);
log_messages.printf(MSG_NORMAL,
"[send] No disk space available: x1 %.2fGB x2 %.2fGB x3 %.2fGB x %.2fGB\n",
x1/GIGA, x2/GIGA, x3/GIGA, x/GIGA
);
}
g_wreq->disk.set_insufficient(-x);
x = 0;
}
return x;
}
static double estimate_duration_unscaled(WORKUNIT& wu, BEST_APP_VERSION& bav) {
double rsc_fpops_est = wu.rsc_fpops_est;
if (rsc_fpops_est <= 0) rsc_fpops_est = 1e12;
return rsc_fpops_est/bav.host_usage.projected_flops;
}
// Compute cpu_available_frac and gpu_available_frac.
// These are based on client-supplied data, so do sanity checks
//
#define FRAC_MIN 0.1
static inline void clamp_frac(double& frac, const char* name) {
if (frac > 1) {
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] %s=%f; setting to 1\n", name, frac
);
}
frac = 1;
} else if (frac < FRAC_MIN) {
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] %s=%f; setting to %f\n", name, frac, FRAC_MIN
);
}
frac = .01;
}
}
static inline void get_available_fracs() {
if (g_request->core_client_version<=41900) {
g_wreq->cpu_available_frac = g_reply->host.on_frac;
g_wreq->gpu_available_frac = g_reply->host.on_frac; // irrelevant
} else {
g_wreq->cpu_available_frac = g_reply->host.active_frac * g_reply->host.on_frac;
g_wreq->gpu_available_frac = g_reply->host.gpu_active_frac * g_reply->host.on_frac;
}
clamp_frac(g_wreq->cpu_available_frac, "CPU available fraction");
clamp_frac(g_wreq->gpu_available_frac, "GPU available fraction");
}
double available_frac(BEST_APP_VERSION& bav) {
if (bav.host_usage.uses_gpu()) {
return g_wreq->gpu_available_frac;
} else {
return g_wreq->cpu_available_frac;
}
}
// estimate the amount of real time to complete this WU,
// taking into account active_frac etc.
// Note: don't factor in resource_share_fraction.
// The core client doesn't necessarily round-robin across all projects.
//
double estimate_duration(WORKUNIT& wu, BEST_APP_VERSION& bav) {
double edu = estimate_duration_unscaled(wu, bav);
double ed = edu/available_frac(bav);
if (config.debug_send_job) {
log_messages.printf(MSG_NORMAL,
"[send_job] est. duration for WU %lu: unscaled %.2f scaled %.2f\n",
wu.id, edu, ed
);
}
return ed;
}
// Parse user's project prferences.
// TODO: use XML_PARSER
//
static void get_prefs_info() {
char buf[8096];
std::string str;
unsigned int pos = 0;
int temp_int=0;
bool flag;
extract_venue(g_reply->user.project_prefs, g_reply->host.venue, buf, sizeof(buf));
str = buf;
// scan user's project prefs for elements of the form N,
// indicating the apps they want to run.
//
g_wreq->preferred_apps.clear();
while (parse_int(str.substr(pos,str.length()-pos).c_str(), "", temp_int)) {
APP_INFO ai;
ai.appid = temp_int;
ai.work_available = false;
g_wreq->preferred_apps.push_back(ai);
pos = str.find("", pos) + 1;
}
if (parse_bool(buf,"allow_non_preferred_apps", flag)) {
g_wreq->allow_non_preferred_apps = flag;
}
if (parse_bool(buf,"allow_beta_work", flag)) {
g_wreq->allow_beta_work = flag;
}
if (parse_bool(buf,"no_gpus", flag)) {
// deprecated, but need to handle
if (flag) {
for (int i=1; idont_use_proc_type[i] = true;
}
}
}
if (parse_bool(buf,"no_cpu", flag)) {
g_wreq->dont_use_proc_type[PROC_TYPE_CPU] = flag;
}
if (parse_bool(buf,"no_cuda", flag)) {
g_wreq->dont_use_proc_type[PROC_TYPE_NVIDIA_GPU] = flag;
}
if (parse_bool(buf,"no_ati", flag)) {
g_wreq->dont_use_proc_type[PROC_TYPE_AMD_GPU] = flag;
}
if (parse_bool(buf,"no_intel_gpu", flag)) {
g_wreq->dont_use_proc_type[PROC_TYPE_INTEL_GPU] = flag;
}
}
void update_n_jobs_today() {
for (unsigned int i=0; ihost_app_versions.size(); i++) {
DB_HOST_APP_VERSION& hav = g_wreq->host_app_versions[i];
update_quota(hav);
}
}
static inline void update_estimated_delay(BEST_APP_VERSION& bav, double dt) {
int pt = bav.host_usage.proc_type;
if (pt == PROC_TYPE_CPU) {
g_request->cpu_estimated_delay += dt*bav.host_usage.avg_ncpus/g_request->host.p_ncpus;
} else {
COPROC* cp = g_request->coprocs.proc_type_to_coproc(pt);
cp->estimated_delay += dt*bav.host_usage.gpu_usage/cp->count;
}
}
// insert "text" right after "after" in the given buffer
//
static int insert_after(char* buffer, const char* after, const char* text) {
char* p;
char temp[BLOB_SIZE];
if (strlen(buffer) + strlen(text) >= BLOB_SIZE-1) {
log_messages.printf(MSG_CRITICAL,
"insert_after: overflow: %d %d\n",
(int)strlen(buffer),
(int)strlen(text)
);
return ERR_BUFFER_OVERFLOW;
}
p = strstr(buffer, after);
if (!p) {
log_messages.printf(MSG_CRITICAL,
"insert_after: %s not found in %s\n", after, buffer
);
return ERR_XML_PARSE;
}
p += strlen(after);
strcpy(temp, p);
strcpy(p, text);
strcat(p, temp);
return 0;
}
// add elements to WU's xml_doc,
// in preparation for sending it to a client
//
static int insert_wu_tags(WORKUNIT& wu, APP& app) {
char buf[BLOB_SIZE];
sprintf(buf,
" %f\n"
" %f\n"
" %f\n"
" %f\n"
" %s\n"
" %s\n",
wu.rsc_fpops_est,
wu.rsc_fpops_bound,
wu.rsc_memory_bound,
wu.rsc_disk_bound,
wu.name,
app.name
);
return insert_after(wu.xml_doc, "\n", buf);
}
// Add the given workunit, app, and app version to a reply.
//
static int add_wu_to_reply(
WORKUNIT& wu, SCHEDULER_REPLY&, APP* app, BEST_APP_VERSION* bavp
) {
int retval;
WORKUNIT wu2, wu3;
APP_VERSION* avp = bavp->avp;
// add the app, app_version, and workunit to the reply,
// but only if they aren't already there
//
if (avp) {
APP_VERSION av2=*avp, *avp2=&av2;
if (strlen(config.replace_download_url_by_timezone)) {
process_av_timezone(avp, av2);
}
g_reply->insert_app_unique(*app);
av2.bavp = bavp;
g_reply->insert_app_version_unique(*avp2);
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] Sending app_version %s %lu %d %s; projected %.2f GFLOPS\n",
app->name,
avp2->platformid, avp2->version_num, avp2->plan_class,
bavp->host_usage.projected_flops/1e9
);
}
}
// modify the WU's xml_doc; add , etc.
//
wu2 = wu; // make copy since we're going to modify its XML field
// adjust FPOPS figures for anonymous platform
//
if (bavp->cavp) {
wu2.rsc_fpops_est *= bavp->cavp->rsc_fpops_scale;
wu2.rsc_fpops_bound *= bavp->cavp->rsc_fpops_scale;
}
retval = insert_wu_tags(wu2, *app);
if (retval) {
log_messages.printf(MSG_CRITICAL,
"insert_wu_tags failed: %s\n", boincerror(retval)
);
return retval;
}
wu3 = wu2;
if (strlen(config.replace_download_url_by_timezone)) {
process_wu_timezone(wu2, wu3);
}
g_reply->insert_workunit_unique(wu3);
// switch to tighter policy for estimating delay
//
return 0;
}
// add tags to result's xml_doc_in
//
static int insert_name_tags(RESULT& result, WORKUNIT const& wu) {
char buf[256];
int retval;
sprintf(buf, "%s\n", result.name);
retval = insert_after(result.xml_doc_in, "\n", buf);
if (retval) return retval;
sprintf(buf, "%s\n", wu.name);
retval = insert_after(result.xml_doc_in, "\n", buf);
if (retval) return retval;
return 0;
}
static int insert_deadline_tag(RESULT& result) {
char buf[256];
sprintf(buf, "%d\n", result.report_deadline);
int retval = insert_after(result.xml_doc_in, "\n", buf);
if (retval) return retval;
return 0;
}
// update workunit fields when send an instance of it:
// - transition time
// - app_version_id, if app uses homogeneous app version
// - hr_class, if we're using HR
//
// In the latter two cases, the update is conditional on the field
// fields either being zero or the desired value.
// Some other scheduler instance might have updated it since we read the WU,
// and the transitioner might have set it to zero.
//
int update_wu_on_send(WORKUNIT wu, time_t x, APP& app, BEST_APP_VERSION& bav) {
DB_WORKUNIT dbwu;
char buf[256], buf2[256], where_clause[256];
int retval;
dbwu.id = wu.id;
// SQL note: can't use min() here
//
sprintf(buf,
"transition_time=if(transition_time<%d, transition_time, %d)",
(int)x, (int)x
);
strcpy(where_clause, "");
if (app.homogeneous_app_version) {
sprintf(buf2, ", app_version_id=%lu", bav.avp->id);
strcat(buf, buf2);
sprintf(where_clause,
"(app_version_id=0 or app_version_id=%lu)", bav.avp->id
);
}
if (app_hr_type(app)) {
int host_hr_class = hr_class(g_request->host, app_hr_type(app));
sprintf(buf2, ", hr_class=%d", host_hr_class);
strcat(buf, buf2);
if (strlen(where_clause)) {
strcat(where_clause, " and ");
}
sprintf(buf2, "(hr_class=0 or hr_class=%d)", host_hr_class);
strcat(where_clause, buf2);
}
retval = dbwu.update_field(buf, strlen(where_clause)?where_clause:NULL);
if (retval) return retval;
if (boinc_db.affected_rows() != 1) {
return ERR_DB_NOT_FOUND;
}
return 0;
}
// return true iff a result for same WU is already being sent
//
bool wu_already_in_reply(WORKUNIT& wu) {
unsigned int i;
for (i=0; iresults.size(); i++) {
if (wu.id == g_reply->results[i].workunitid) {
return true;
}
}
return false;
}
void lock_sema() {
lock_semaphore(sema_key);
}
void unlock_sema() {
unlock_semaphore(sema_key);
}
static inline bool have_apps(int pt) {
if (g_wreq->anonymous_platform) {
return g_wreq->client_has_apps_for_proc_type[pt];
} else {
return ssp->have_apps_for_proc_type[pt];
}
}
// return true if additional work is needed,
// and there's disk space left,
// and we haven't exceeded result per RPC limit,
// and we haven't exceeded results per day limit
//
bool work_needed(bool locality_sched) {
if (locality_sched) {
// if we've failed to send a result because of a transient condition,
// return false to preserve invariant
//
if (g_wreq->disk.insufficient) {
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] stopping work search - insufficient disk space\n"
);
}
return false;
}
if (g_wreq->speed.insufficient) {
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] stopping work search - host too slow\n"
);
}
return false;
}
if (g_wreq->mem.insufficient) {
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] stopping work search - insufficient memory\n"
);
}
return false;
}
if (g_wreq->no_allowed_apps_available) {
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] stopping work search - no locality app selected\n"
);
}
return false;
}
}
// see if we've reached limits on in-progress jobs
//
bool some_type_allowed = false;
for (int i=0; iclear_req(i);
g_wreq->max_jobs_on_host_proc_type_exceeded[i] = true;
} else {
some_type_allowed = true;
}
}
if (!some_type_allowed) {
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] in-progress job limit exceeded\n"
);
}
g_wreq->max_jobs_on_host_exceeded = true;
return false;
}
// see if we've reached max jobs per RPC
//
if (g_wreq->njobs_sent >= g_wreq->max_jobs_per_rpc) {
if (config.debug_quota) {
log_messages.printf(MSG_NORMAL,
"[quota] stopping work search - njobs %d >= max_jobs_per_rpc %d\n",
g_wreq->njobs_sent, g_wreq->max_jobs_per_rpc
);
}
return false;
}
#if 0
if (config.debug_send) {
char buf[256], buf2[256];
strcpy(buf, "");
for (int i=0; ireq_secs[i],
g_wreq->req_instances[i]
);
strcat(buf, buf2);
}
log_messages.printf(MSG_NORMAL,
"[send] work_needed: spec req %d sec to fill %.2f; %s\n",
g_wreq->rsc_spec_request,
g_wreq->seconds_to_fill,
buf
);
}
#endif
if (g_wreq->rsc_spec_request) {
for (int i=0; ineed_proc_type(i) && have_apps(i)) {
return true;
}
}
} else {
if (g_wreq->seconds_to_fill > 0) {
return true;
}
}
if (config.debug_send) {
log_messages.printf(MSG_NORMAL, "[send] don't need more work\n");
}
return false;
}
// return the app version ID, or -2/-3/-4 if anonymous platform
//
inline static DB_ID_TYPE get_app_version_id(BEST_APP_VERSION* bavp) {
if (bavp->avp) {
return bavp->avp->id;
} else {
return bavp->cavp->host_usage.resource_type();
}
}
int add_result_to_reply(
SCHED_DB_RESULT& result,
WORKUNIT& wu,
BEST_APP_VERSION* bavp,
bool locality_scheduling
) {
int retval;
bool resent_result = false;
APP* app = ssp->lookup_app(wu.appid);
result.hostid = g_reply->host.id;
result.userid = g_reply->user.id;
result.sent_time = time(0);
result.report_deadline = result.sent_time + wu.delay_bound;
result.flops_estimate = bavp->host_usage.peak_flops;
result.app_version_id = get_app_version_id(bavp);
// update WU DB record.
// This can fail in normal operation
// (other scheduler already updated hr_class or app_version_id)
// so do it before updating the result.
//
retval = update_wu_on_send(
wu, result.report_deadline + config.report_grace_period, *app, *bavp
);
if (retval == ERR_DB_NOT_FOUND) {
log_messages.printf(MSG_NORMAL,
"add_result_to_reply: WU already sent to other HR class or app version\n"
);
return retval;
} else if (retval) {
log_messages.printf(MSG_CRITICAL,
"add_result_to_reply: WU update failed: %d\n",
retval
);
return retval;
}
// update result DB record.
// This can also fail in normal operation.
// In this case, in principle we should undo
// the changes we just made to the WU (or use a transaction)
// but I don't think it actually matters.
//
int old_server_state = result.server_state;
if (result.server_state != RESULT_SERVER_STATE_IN_PROGRESS) {
// We're sending this result for the first time
//
result.server_state = RESULT_SERVER_STATE_IN_PROGRESS;
} else {
// Result was already sent to this host but was lost,
// so we're resending it.
//
resent_result = true;
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] [RESULT#%lu] [HOST#%lu] (resend lost work)\n",
result.id, g_reply->host.id
);
}
}
retval = result.mark_as_sent(old_server_state, config.report_grace_period);
if (retval == ERR_DB_NOT_FOUND) {
log_messages.printf(MSG_CRITICAL,
"[RESULT#%lu] [HOST#%lu]: CAN'T SEND, already sent to another host\n",
result.id, g_reply->host.id
);
} else if (retval) {
log_messages.printf(MSG_CRITICAL,
"add_result_to_reply: can't update result: %s\n", boincerror(retval)
);
}
if (retval) return retval;
// done with DB updates.
//
retval = add_wu_to_reply(wu, *g_reply, app, bavp);
if (retval) return retval;
// Adjust available disk space.
// In the locality scheduling locality case,
// reduce the available space by less than the workunit rsc_disk_bound,
// if the host already has the file or the file was not already sent.
//
if (!locality_scheduling || decrement_disk_space_locality(wu)) {
g_wreq->disk_available -= wu.rsc_disk_bound;
}
double est_dur = estimate_duration(wu, *bavp);
if (config.debug_send) {
double max_time = wu.rsc_fpops_bound / bavp->host_usage.projected_flops;
char buf1[64],buf2[64];
secs_to_hmsf(est_dur, buf1);
secs_to_hmsf(max_time, buf2);
log_messages.printf(MSG_NORMAL,
"[send] [HOST#%lu] sending [RESULT#%lu %s] (est. dur. %.2fs (%s)) (max time %.2fs (%s))\n",
g_reply->host.id, result.id, result.name, est_dur, buf1, max_time, buf2
);
}
// The following overwrites the result's xml_doc field.
// But that's OK cuz we're done with DB updates
//
retval = insert_name_tags(result, wu);
if (retval) {
log_messages.printf(MSG_CRITICAL,
"add_result_to_reply: can't insert name tags: %d\n",
retval
);
return retval;
}
retval = insert_deadline_tag(result);
if (retval) {
log_messages.printf(MSG_CRITICAL,
"add_result_to_reply: can't insert deadline tag: %s\n", boincerror(retval)
);
return retval;
}
result.bav = *bavp;
g_reply->insert_result(result);
if (g_wreq->rsc_spec_request) {
int pt = bavp->host_usage.proc_type;
if (pt == PROC_TYPE_CPU) {
g_wreq->req_secs[PROC_TYPE_CPU] -= est_dur;
g_wreq->req_instances[PROC_TYPE_CPU] -= bavp->host_usage.avg_ncpus;
} else {
g_wreq->req_secs[pt] -= est_dur;
g_wreq->req_instances[pt] -= bavp->host_usage.gpu_usage;
}
} else {
g_wreq->seconds_to_fill -= est_dur;
}
update_estimated_delay(*bavp, est_dur);
g_wreq->njobs_sent++;
config.max_jobs_in_progress.register_job(app, bavp->host_usage.proc_type);
if (!resent_result) {
DB_HOST_APP_VERSION* havp = bavp->host_app_version();
if (havp) {
havp->n_jobs_today++;
}
}
// add this result to workload for simulation
//
if (config.workload_sim && g_request->have_other_results_list) {
IP_RESULT ipr ("", time(0)+wu.delay_bound, est_dur);
g_request->ip_results.push_back(ipr);
}
// mark job as done if debugging flag is set;
// this is used by sched_driver.C (performance testing)
//
if (mark_jobs_done) {
DB_WORKUNIT dbwu;
char buf[256];
sprintf(buf,
"server_state=%d outcome=%d",
RESULT_SERVER_STATE_OVER, RESULT_OUTCOME_SUCCESS
);
result.update_field(buf);
dbwu.id = wu.id;
sprintf(buf, "transition_time=%ld", time(0));
dbwu.update_field(buf);
}
// If we're sending an unreplicated job to an untrusted host,
// mark it as replicated
//
if (wu.target_nresults == 1 && app->target_nresults > 1) {
if (bavp->trusted) {
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] [WU#%lu] using trusted app version, not replicating\n", wu.id
);
}
} else {
DB_WORKUNIT dbwu;
char buf[256];
sprintf(buf,
"target_nresults=%d, min_quorum=%d, transition_time=%ld",
app->target_nresults, app->target_nresults, time(0)
);
dbwu.id = wu.id;
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] [WU#%lu] sending to untrusted host, replicating\n", wu.id
);
}
retval = dbwu.update_field(buf);
if (retval) {
log_messages.printf(MSG_CRITICAL,
"WU update failed: %s", boincerror(retval)
);
}
}
}
// if the app uses locality scheduling lite,
// add the job's files to the list of those on host
//
if (app->locality_scheduling == LOCALITY_SCHED_LITE) {
add_job_files_to_host(wu);
}
return 0;
}
// Send high-priority messages about things the user can change easily
// (namely the driver version)
// and low-priority messages about things that can't easily be changed,
// but which may be interfering with getting tasks or latest apps
//
static void send_gpu_property_messages(
GPU_REQUIREMENTS& req, double ram, int version, const char* rsc_name
) {
char buf[256];
if (ram < req.min_ram) {
sprintf(buf,
"A minimum of %d MB (preferably %d MB) of video RAM is needed to process tasks using your computer's %s",
(int) (req.min_ram/MEGA),
(int) (req.opt_ram/MEGA),
rsc_name
);
g_reply->insert_message(buf, "low");
} else {
if (version) {
if (version < req.min_driver_version) {
sprintf(buf,
"%s: %s",
rsc_name,
_("Upgrade to the latest driver to process tasks using your computer's GPU")
);
g_reply->insert_message(buf, "notice");
} else if (version < req.opt_driver_version) {
sprintf(buf,
"%s: %s",
rsc_name,
_("Upgrade to the latest driver to use all of this project's GPU applications")
);
g_reply->insert_message(buf, "low");
}
}
}
}
// send messages complaining about lack of GPU or the properties of GPUs
//
void send_gpu_messages() {
// Mac client with GPU but too-old client
//
if (g_request->coprocs.nvidia.count
&& ssp->have_apps_for_proc_type[PROC_TYPE_NVIDIA_GPU]
&& strstr(g_request->host.os_name, "Darwin")
&& g_request->core_client_version < 61028
) {
g_reply->insert_message(
_("A newer version of BOINC is needed to use your NVIDIA GPU; please upgrade to the current version"),
"notice"
);
}
// GPU-only project, client lacks GPU
//
bool usable_gpu = false;
bool have_gpu_apps = false;
for (int i=1; ihave_apps_for_proc_type[i]) {
have_gpu_apps = true;
COPROC* cp = g_request->coprocs.proc_type_to_coproc(i);
if (cp && cp->count) {
usable_gpu = true;
}
}
}
if (!ssp->have_apps_for_proc_type[PROC_TYPE_CPU]
&& have_gpu_apps
&& !usable_gpu
) {
char buf[256];
strcpy(buf, "");
for (int i=1; ihave_apps_for_proc_type[i]) {
if (strlen(buf)) {
strcat(buf, " or ");
}
strcat(buf, proc_type_name(i));
}
}
char msg[1024];
sprintf(msg,
_("An %s GPU is required to run tasks for this project"),
buf
);
g_reply->insert_message(msg, "notice");
}
if (g_request->coprocs.nvidia.count && ssp->have_apps_for_proc_type[PROC_TYPE_NVIDIA_GPU]) {
send_gpu_property_messages(gpu_requirements[PROC_TYPE_NVIDIA_GPU],
g_request->coprocs.nvidia.prop.totalGlobalMem,
g_request->coprocs.nvidia.display_driver_version,
proc_type_name(PROC_TYPE_NVIDIA_GPU)
);
}
if (g_request->coprocs.ati.count && ssp->have_apps_for_proc_type[PROC_TYPE_AMD_GPU]) {
send_gpu_property_messages(gpu_requirements[PROC_TYPE_AMD_GPU],
g_request->coprocs.ati.attribs.localRAM*MEGA,
g_request->coprocs.ati.version_num,
proc_type_name(PROC_TYPE_AMD_GPU)
);
}
if (g_request->coprocs.intel_gpu.count && ssp->have_apps_for_proc_type[PROC_TYPE_INTEL_GPU]) {
send_gpu_property_messages(gpu_requirements[PROC_TYPE_INTEL_GPU],
g_request->coprocs.intel_gpu.opencl_prop.global_mem_size,
0,
proc_type_name(PROC_TYPE_INTEL_GPU)
);
}
}
// send messages to user about why jobs were or weren't sent,
// recommendations for GPU driver upgrades, etc.
//
static void send_user_messages() {
char buf[512];
unsigned int i;
int j;
// GPU messages aren't relevant if anonymous platform
//
if (!g_wreq->anonymous_platform) {
send_gpu_messages();
}
// If work was sent from apps the user did not select, explain.
// NOTE: this will have to be done differently with matchmaker scheduling
//
if (!config.locality_scheduling && !config.locality_scheduler_fraction && config.sched_old) {
if (g_wreq->njobs_sent && !g_wreq->user_apps_only) {
g_reply->insert_message(
"No tasks are available for the applications you have selected",
"low"
);
// Inform the user about applications with no work
//
for (i=0; ipreferred_apps.size(); i++) {
if (!g_wreq->preferred_apps[i].work_available) {
APP* app = ssp->lookup_app(g_wreq->preferred_apps[i].appid);
// don't write message if the app is deprecated
//
if (app) {
char explanation[256];
sprintf(explanation,
"No tasks are available for %s",
find_user_friendly_name(g_wreq->preferred_apps[i].appid)
);
g_reply->insert_message( explanation, "low");
}
}
}
// Tell the user about applications they didn't qualify for
//
for (j=0; jinsert_message(g_wreq->no_work_messages.at(j));
}
g_reply->insert_message(
"Your preferences allow tasks from applications other than those selected",
"low"
);
g_reply->insert_message(
"Sending tasks from other applications", "low"
);
}
}
// if client asked for work and we're not sending any, explain why
//
if (g_wreq->njobs_sent == 0 && g_request->work_req_seconds) {
g_reply->set_delay(DELAY_NO_WORK_TEMP);
g_reply->insert_message("No tasks sent", "low");
// Tell the user about applications with no work
//
for (i=0; ipreferred_apps.size(); i++) {
if (!g_wreq->preferred_apps[i].work_available) {
APP* app = ssp->lookup_app(g_wreq->preferred_apps[i].appid);
// don't write message if the app is deprecated
if (app != NULL) {
sprintf(buf, "No tasks are available for %s",
find_user_friendly_name(
g_wreq->preferred_apps[i].appid
)
);
g_reply->insert_message(buf, "low");
}
}
}
for (i=0; ino_work_messages.size(); i++){
g_reply->insert_message(g_wreq->no_work_messages.at(i));
}
if (g_wreq->no_allowed_apps_available) {
g_reply->insert_message(
_("No tasks are available for the applications you have selected."),
"low"
);
}
if (g_wreq->speed.insufficient) {
if (g_request->core_client_version>41900) {
sprintf(buf,
"Tasks won't finish in time: BOINC runs %.1f%% of the time; computation is enabled %.1f%% of that",
100*g_reply->host.on_frac, 100*g_reply->host.active_frac
);
} else {
sprintf(buf,
"Tasks won't finish in time: Computer available %.1f%% of the time",
100*g_reply->host.on_frac
);
}
g_reply->insert_message(buf, "low");
}
if (g_wreq->hr_reject_temp) {
g_reply->insert_message(
"Tasks are committed to other platforms",
"low"
);
}
if (g_wreq->hr_reject_perm) {
g_reply->insert_message(
_("Your computer type is not supported by this project"),
"notice"
);
}
if (g_wreq->outdated_client) {
g_reply->insert_message(
_("Newer BOINC version required; please install current version"),
"notice"
);
g_reply->set_delay(DELAY_NO_WORK_PERM);
log_messages.printf(MSG_NORMAL,
"Not sending tasks because newer client version required\n"
);
}
for (i=0; idont_use_proc_type[i] && ssp->have_apps_for_proc_type[i]) {
sprintf(buf,
_("Tasks for %s are available, but your preferences are set to not accept them"),
proc_type_name(i)
);
g_reply->insert_message(buf, "low");
}
}
DB_HOST_APP_VERSION* havp = quota_exceeded_version();
if (havp) {
sprintf(buf, "This computer has finished a daily quota of %d tasks",
havp->max_jobs_per_day
);
g_reply->insert_message(buf, "low");
if (config.debug_quota) {
log_messages.printf(MSG_NORMAL,
"[quota] Daily quota %d exceeded for app version %lu\n",
havp->max_jobs_per_day, havp->app_version_id
);
}
g_reply->set_delay(DELAY_NO_WORK_CACHE);
}
if (g_wreq->max_jobs_exceeded()) {
sprintf(buf, "This computer has reached a limit on tasks in progress");
g_reply->insert_message(buf, "low");
g_reply->set_delay(DELAY_NO_WORK_CACHE);
}
}
}
static double clamp_req_sec(double x) {
if (x < MIN_REQ_SECS) return MIN_REQ_SECS;
if (x > MAX_REQ_SECS) return MAX_REQ_SECS;
return x;
}
// prepare to send jobs, both resent and new;
// decipher request type, fill in WORK_REQ
//
void send_work_setup() {
unsigned int i;
g_wreq->seconds_to_fill = clamp_req_sec(g_request->work_req_seconds);
g_wreq->req_secs[PROC_TYPE_CPU] = clamp_req_sec(g_request->cpu_req_secs);
g_wreq->req_instances[PROC_TYPE_CPU] = g_request->cpu_req_instances;
g_wreq->anonymous_platform = is_anonymous(g_request->platforms.list[0]);
// decide on attributes of HOST_APP_VERSIONS
//
get_reliability_and_trust();
// parse project preferences (e.g. no GPUs)
//
get_prefs_info();
if (g_wreq->anonymous_platform) {
estimate_flops_anon_platform();
for (i=0; iclient_has_apps_for_proc_type[i] = false;
}
for (i=0; iclient_app_versions.size(); i++) {
CLIENT_APP_VERSION& cav = g_request->client_app_versions[i];
int pt = cav.host_usage.proc_type;
g_wreq->client_has_apps_for_proc_type[pt] = true;
}
}
for (i=1; idisk_available = max_allowable_disk();
get_mem_sizes();
get_available_fracs();
g_wreq->get_job_limits();
// do sanity checking on GPU scheduling parameters
//
for (i=1; icoprocs.proc_type_to_coproc(i);
if (cp && cp->count) {
g_wreq->req_secs[i] = clamp_req_sec(cp->req_secs);
g_wreq->req_instances[i] = cp->req_instances;
if (cp->estimated_delay < 0) {
cp->estimated_delay = g_request->cpu_estimated_delay;
}
}
}
g_wreq->rsc_spec_request = false;
for (i=0; ireq_secs[i]) {
g_wreq->rsc_spec_request = true;
break;
}
}
for (i=0; iother_results.size(); i++) {
OTHER_RESULT& r = g_request->other_results[i];
APP* app = NULL;
int proc_type = PROC_TYPE_CPU;
bool have_cav = false;
if (r.app_version >= 0
&& r.app_version < (int)g_request->client_app_versions.size()
) {
CLIENT_APP_VERSION& cav = g_request->client_app_versions[r.app_version];
app = cav.app;
if (app) {
have_cav = true;
proc_type = cav.host_usage.proc_type;
}
}
if (!have_cav) {
if (r.have_plan_class) {
proc_type = plan_class_to_proc_type(r.plan_class);
}
}
config.max_jobs_in_progress.register_job(app, proc_type);
}
// print details of request to log
//
if (config.debug_quota) {
log_messages.printf(MSG_NORMAL,
"[quota] max jobs per RPC: %d\n", g_wreq->max_jobs_per_rpc
);
config.max_jobs_in_progress.print_log();
}
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] %s old scheduling; %s EDF sim\n",
config.sched_old?"Using":"Not using",
config.workload_sim?"Using":"Not using"
);
log_messages.printf(MSG_NORMAL,
"[send] CPU: req %.2f sec, %.2f instances; est delay %.2f\n",
g_wreq->req_secs[PROC_TYPE_CPU],
g_wreq->req_instances[PROC_TYPE_CPU],
g_request->cpu_estimated_delay
);
for (i=1; icoprocs.proc_type_to_coproc(i);
if (cp && cp->count) {
log_messages.printf(MSG_NORMAL,
"[send] %s: req %.2f sec, %.2f instances; est delay %.2f\n",
proc_type_name(i),
g_wreq->req_secs[i],
g_wreq->req_instances[i],
cp->estimated_delay
);
}
}
log_messages.printf(MSG_NORMAL,
"[send] work_req_seconds: %.2f secs\n",
g_wreq->seconds_to_fill
);
log_messages.printf(MSG_NORMAL,
"[send] available disk %.2f GB, work_buf_min %d\n",
g_wreq->disk_available/GIGA,
(int)g_request->global_prefs.work_buf_min()
);
log_messages.printf(MSG_NORMAL,
"[send] on_frac %f active_frac %f gpu_active_frac %f\n",
g_reply->host.on_frac,
g_reply->host.active_frac,
g_reply->host.gpu_active_frac
);
if (g_wreq->anonymous_platform) {
log_messages.printf(MSG_NORMAL,
"[send] Anonymous platform app versions:\n"
);
for (i=0; iclient_app_versions.size(); i++) {
CLIENT_APP_VERSION& cav = g_request->client_app_versions[i];
char buf[256];
strcpy(buf, "");
int pt = cav.host_usage.proc_type;
if (pt) {
sprintf(buf, " %.2f %s GPU",
cav.host_usage.gpu_usage,
proc_type_name(pt)
);
}
log_messages.printf(MSG_NORMAL,
" app: %s version %d cpus %.2f%s flops %fG\n",
cav.app_name,
cav.version_num,
cav.host_usage.avg_ncpus,
buf,
cav.host_usage.projected_flops/1e9
);
}
}
#if 0
log_messages.printf(MSG_NORMAL,
"[send] p_vm_extensions_disabled: %s\n",
g_request->host.p_vm_extensions_disabled?"yes":"no"
);
#endif
log_messages.printf(MSG_NORMAL,
"[send] CPU features: %s\n", g_request->host.p_features
);
}
}
// If a record is not in DB, create it.
//
int update_host_app_versions(vector& results, int hostid) {
vector new_havs;
unsigned int i, j;
int retval;
for (i=0; ihost)) {
log_messages.printf(MSG_NORMAL,
"Not sending work because unknown HR class\n"
);
g_wreq->hr_reject_perm = true;
return;
}
if (config.enable_assignment) {
if (send_targeted_jobs()) {
if (config.debug_assignment) {
log_messages.printf(MSG_NORMAL,
"[assign] [HOST#%lu] sent assigned jobs\n", g_reply->host.id
);
}
goto done;
}
}
if (config.enable_assignment_multi) {
if (send_broadcast_jobs()) {
if (config.debug_assignment) {
log_messages.printf(MSG_NORMAL,
"[assign] [HOST#%lu] sent assigned jobs\n", g_reply->host.id
);
}
goto done;
}
}
if (config.workload_sim && g_request->have_other_results_list) {
init_ip_results(
g_request->global_prefs.work_buf_min(),
g_wreq->effective_ncpus, g_request->ip_results
);
}
// send non-CPU-intensive jobs if needed
//
if (ssp->have_nci_app) {
send_nci();
}
if (!work_needed(false)) {
goto done;
}
if (config.locality_scheduler_fraction > 0) {
if (drand() < config.locality_scheduler_fraction) {
if (config.debug_locality) {
log_messages.printf(MSG_NORMAL,
"[mixed] sending locality work first\n"
);
}
send_work_locality();
// save 'insufficient' flags from the first scheduler
bool disk_insufficient = g_wreq->disk.insufficient;
bool speed_insufficient = g_wreq->speed.insufficient;
bool mem_insufficient = g_wreq->mem.insufficient;
bool no_allowed_apps_available = g_wreq->no_allowed_apps_available;
// reset 'insufficient' flags for the second scheduler
g_wreq->disk.insufficient = false;
g_wreq->speed.insufficient = false;
g_wreq->mem.insufficient = false;
g_wreq->no_allowed_apps_available = false;
if (config.debug_locality) {
log_messages.printf(MSG_NORMAL,
"[mixed] sending non-locality work second\n"
);
}
send_work_old();
// recombine the 'insufficient' flags from the two schedulers
g_wreq->disk.insufficient = g_wreq->disk.insufficient && disk_insufficient;
g_wreq->speed.insufficient = g_wreq->speed.insufficient && speed_insufficient;
g_wreq->mem.insufficient = g_wreq->mem.insufficient && mem_insufficient;
g_wreq->no_allowed_apps_available = g_wreq->no_allowed_apps_available && no_allowed_apps_available;
} else {
if (config.debug_locality) {
log_messages.printf(MSG_NORMAL,
"[mixed] sending non-locality work first\n"
);
}
// save 'insufficient' flags from the first scheduler
bool disk_insufficient = g_wreq->disk.insufficient;
bool speed_insufficient = g_wreq->speed.insufficient;
bool mem_insufficient = g_wreq->mem.insufficient;
bool no_allowed_apps_available = g_wreq->no_allowed_apps_available;
// reset 'insufficient' flags for the second scheduler
g_wreq->disk.insufficient = false;
g_wreq->speed.insufficient = false;
g_wreq->mem.insufficient = false;
g_wreq->no_allowed_apps_available = false;
send_work_old();
if (config.debug_locality) {
log_messages.printf(MSG_NORMAL,
"[mixed] sending locality work second\n"
);
}
send_work_locality();
// recombine the 'insufficient' flags from the two schedulers
g_wreq->disk.insufficient = g_wreq->disk.insufficient && disk_insufficient;
g_wreq->speed.insufficient = g_wreq->speed.insufficient && speed_insufficient;
g_wreq->mem.insufficient = g_wreq->mem.insufficient && mem_insufficient;
g_wreq->no_allowed_apps_available = g_wreq->no_allowed_apps_available && no_allowed_apps_available;
}
} else if (config.locality_scheduling) {
send_work_locality();
} else if (config.sched_old) {
send_work_old();
} else {
send_work_score();
}
done:
retval = update_host_app_versions(g_reply->results, g_reply->host.id);
if (retval) {
log_messages.printf(MSG_CRITICAL,
"update_host_app_versions() failed: %s\n", boincerror(retval)
);
}
send_user_messages();
}
const char *BOINC_RCSID_32dcd335e7 = "$Id$";