// This file is part of BOINC.
// http://boinc.berkeley.edu
// Copyright (C) 2008 University of California
//
// BOINC is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License
// as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// BOINC is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with BOINC. If not, see .
// Structures representing coprocessors (e.g. GPUs);
// used in both client and server.
//
// Notes:
//
// 1) The use of "CUDA" is misleading; it really means "NVIDIA GPU".
// 2) The design treats each resource type as a pool of identical devices;
// for example, there is a single "CUDA long-term debt" per project,
// and a scheduler request contains a request (#instances, instance-seconds)
// for CUDA jobs.
// In reality, the instances of a resource type can have different properties:
// In the case of CUDA, "compute capability", driver version, RAM, speed, etc.
// How to resolve this discrepancy?
//
// Prior to 21 Apr 09 we identified the fastest instance
// and pretended that the others were identical to it.
// This approach has a serious flaw:
// suppose that the fastest instance has characteristics
// (version, RAM etc.) that satisfy the project's requirements,
// but other instances to not.
// Then BOINC executes jobs on GPUs that can't handle them,
// the jobs fail, the host is punished, etc.
//
// We could treat each GPU has a separate resource,
// with its own set of debts, backoffs, etc.
// However, this would imply tying jobs to instances,
// which is undesirable from a scheduling viewpoint.
// It would also be a big code change in both client and server.
//
// Instead, (as of 21 Apr 09) our approach is to identify a
// "most capable" instance, which in the case of CUDA is based on
// a) compute capability
// b) driver version
// c) RAM size
// d) est. FLOPS
// (in decreasing priority).
// We ignore and don't use any instances that are less capable
// on any of these axes.
//
// This design avoids running coprocessor apps on instances
// that are incapable of handling them, and it involves no server changes.
// Its drawback is that, on systems with multiple and differing GPUs,
// it may not use some GPUs that actually could be used.
#ifndef _COPROC_
#define _COPROC_
#include
#include
#include
#ifdef _USING_FCGI_
#include "boinc_fcgi.h"
#endif
#include "miofile.h"
#include "error_numbers.h"
#include "parse.h"
#include "cal_boinc.h"
#include "cl_boinc.h"
#define MAX_COPROC_INSTANCES 64
#define MAX_RSC 8
// max # of processing resources types
#define MAX_OPENCL_PLATFORMS 16
#define GPU_TYPE_NVIDIA "NVIDIA"
#define GPU_TYPE_ATI "ATI"
enum COPROC_USAGE {
COPROC_IGNORED,
COPROC_UNUSED,
COPROC_USED
};
// represents a requirement for a coproc.
// This is a parsed version of the elements in an
// (used in client only)
//
struct COPROC_REQ {
char type[256]; // must be unique
double count;
int parse(XML_PARSER&);
};
// there's some duplication between the values in
// the OPENCL_DEVICE_PROP struct and the NVIDIA/ATI structs
//
struct OPENCL_DEVICE_PROP {
cl_device_id device_id;
char name[256]; // Device name
char vendor[256]; // Device vendor (NVIDIA, ATI, AMD, etc.)
cl_uint vendor_id; // OpenCL ID of device vendor
cl_bool available; // Is this device available?
cl_device_fp_config half_fp_config; // Half precision capabilities
cl_device_fp_config single_fp_config; // Single precision
cl_device_fp_config double_fp_config; // Double precision
cl_bool endian_little; // TRUE if little-endian
cl_device_exec_capabilities execution_capabilities;
char extensions[1024]; // List of device extensions
cl_ulong global_mem_size; // in bytes
cl_ulong local_mem_size;
cl_uint max_clock_frequency; // in MHz
cl_uint max_compute_units;
char opencl_platform_version[64]; // Version of OpenCL supported
// the device's platform
char opencl_device_version[64]; // OpenCL version supported by device;
// example: "OpenCL 1.1 beta"
int opencl_device_version_int; // same, encoded as e.g. 101
int get_device_version_int(); // call this to encode
char opencl_driver_version[32]; // For example: "CLH 1.0"
int device_num; // temp used in scan process
double peak_flops; // temp used in scan process
COPROC_USAGE is_used; // temp used in scan process
#ifndef _USING_FCGI_
void write_xml(MIOFILE&);
#endif
int parse(XML_PARSER&);
void description(char* buf, const char* type);
};
// represents a set of identical coprocessors on a particular computer.
// Abstract class;
// objects will always be a derived class (COPROC_CUDA, COPROC_ATI)
// Used in both client and server.
//
struct COPROC {
char type[256]; // must be unique
int count; // how many are present
double peak_flops;
double used; // how many are in use (used by client)
bool have_cuda; // True if this GPU supports CUDA on this computer
bool have_cal; // True if this GPU supports CAL on this computer
bool have_opencl; // True if this GPU supports openCL on this computer
double available_ram;
bool specified_in_config;
// If true, this coproc was listed in cc_config.xml
// rather than being detected by the client.
// the following are used in both client and server for work-fetch info
//
double req_secs;
// how many instance-seconds of work requested
double req_instances;
// client is requesting enough jobs to use this many instances
double estimated_delay;
// resource will be saturated for this long
// temps used in client (enforce_schedule())
// to keep track of what fraction of each instance is in use
// during instance assignment
//
double usage[MAX_COPROC_INSTANCES];
double pending_usage[MAX_COPROC_INSTANCES];
// the device number of each instance
// These are not sequential if we omit instances (see above)
//
int device_nums[MAX_COPROC_INSTANCES];
int device_num; // temp used in scan process
cl_device_id opencl_device_ids[MAX_COPROC_INSTANCES];
int opencl_device_count;
bool running_graphics_app[MAX_COPROC_INSTANCES];
// is this GPU running a graphics app (NVIDIA only)
double available_ram_temp[MAX_COPROC_INSTANCES];
// used during job scheduling
double last_print_time;
OPENCL_DEVICE_PROP opencl_prop;
#ifndef _USING_FCGI_
void write_xml(MIOFILE&);
void write_request(MIOFILE&);
#endif
int parse(XML_PARSER&);
inline void clear() {
// can't just memcpy() - trashes vtable
type[0] = 0;
count = 0;
peak_flops = 0;
used = 0;
have_cuda = false;
have_cal = false;
have_opencl = false;
specified_in_config = false;
available_ram = -1;
req_secs = 0;
req_instances = 0;
opencl_device_count = 0;
estimated_delay = 0;
available_ram = 0;
for (int i=0; i &opencls,
std::vector& ignore_dev
);
void find_best_opencls(
bool use_all,
std::vector &opencls,
std::vector& ignore_dev
);
};
// based on cudaDeviceProp from /usr/local/cuda/include/driver_types.h
// doesn't have to match exactly since we get the attributes one at a time.
//
struct CUDA_DEVICE_PROP {
char name[256];
int deviceHandle;
unsigned int totalGlobalMem;
// not used on the server; dtotalGlobalMem is used instead
// (since some boards have >= 4GB)
int sharedMemPerBlock;
int regsPerBlock;
int warpSize;
int memPitch;
int maxThreadsPerBlock;
int maxThreadsDim[3];
int maxGridSize[3];
int clockRate;
int totalConstMem;
int major; // compute capability
int minor;
int textureAlignment;
int deviceOverlap;
int multiProcessorCount;
double dtotalGlobalMem; // not defined in client
};
struct COPROC_NVIDIA : public COPROC {
int cuda_version; // CUDA runtime version
int display_driver_version;
CUDA_DEVICE_PROP prop;
#ifndef _USING_FCGI_
void write_xml(MIOFILE&, bool include_request);
#endif
COPROC_NVIDIA(): COPROC(GPU_TYPE_NVIDIA){}
void get(
bool use_all,
std::vector&, std::vector&,
std::vector& ignore_devs
);
void description(char*);
void clear();
int parse(XML_PARSER&);
void get_available_ram();
void set_peak_flops();
bool check_running_graphics_app();
void fake(int driver_version, double ram, double avail_ram, int count);
};
// encode a 3-part version as // 10000000*major + 10000*minor + release
// Note: ATI release #s can exceed 1000
//
inline int ati_version_int(int major, int minor, int release) {
return major*10000000 + minor*10000 + release;
}
struct COPROC_ATI : public COPROC {
char name[256];
char version[50];
int version_num;
// CAL version (not driver version) encoded as an int
bool atirt_detected;
bool amdrt_detected;
CALdeviceattribs attribs;
CALdeviceinfo info;
#ifndef _USING_FCGI_
void write_xml(MIOFILE&, bool include_request);
#endif
COPROC_ATI(): COPROC(GPU_TYPE_ATI){}
void get(
bool use_all,
std::vector&, std::vector&,
std::vector& ignore_devs
);
void description(char*);
void clear();
int parse(XML_PARSER&);
void get_available_ram();
void set_peak_flops();
void fake(double ram, double avail_ram, int);
};
struct COPROCS {
int n_rsc;
COPROC coprocs[MAX_RSC];
COPROC_NVIDIA nvidia;
COPROC_ATI ati;
void write_xml(MIOFILE& out, bool include_request);
void get(
bool use_all,
std::vector &descs,
std::vector &warnings,
std::vector& ignore_nvidia_dev,
std::vector& ignore_ati_dev
);
void get_opencl(
bool use_all,
std::vector& descs,
std::vector &warnings,
std::vector& ignore_nvidia_dev,
std::vector& ignore_ati_dev
);
cl_int get_opencl_info(
OPENCL_DEVICE_PROP& prop,
cl_uint device_index,
std::vector& warnings
);
int parse(XML_PARSER&);
void summary_string(char* buf, int len);
// Copy a coproc set, possibly setting usage to zero.
// used in round-robin simulator and CPU scheduler,
// to avoid messing w/ master copy
//
void clone(COPROCS& c, bool copy_used) {
n_rsc = c.n_rsc;
for (int i=0; i 0);
}
inline bool have_ati() {
return (ati.count > 0);
}
int add(COPROC& c) {
if (n_rsc >= MAX_RSC) return ERR_BUFFER_OVERFLOW;
for (int i=1; i