// This file is part of BOINC.
// http://boinc.berkeley.edu
// Copyright (C) 2008 University of California
//
// BOINC is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License
// as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// BOINC is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with BOINC. If not, see .
#include "cpp.h"
#ifdef _WIN32
#include "boinc_win.h"
#else
#include "config.h"
#endif
#include "util.h"
#include "client_msgs.h"
#include "client_state.h"
#include "project.h"
#include "result.h"
#include "scheduler_op.h"
#include "work_fetch.h"
#if 0
#define DEBUG(x) x
#else
#define DEBUG(X)
#endif
using std::vector;
RSC_WORK_FETCH rsc_work_fetch[MAX_RSC];
WORK_FETCH work_fetch;
static inline bool dont_fetch(PROJECT* p, int rsc_type) {
if (p->no_rsc_pref[rsc_type]) return true;
if (p->no_rsc_config[rsc_type]) return true;
if (p->no_rsc_apps[rsc_type]) return true;
if (p->no_rsc_ams[rsc_type]) return true;
return false;
}
// if the configuration file disallows the use of a GPU type
// for a project, set a flag to that effect
//
void set_no_rsc_config() {
for (unsigned int i=0; iproject != p) continue;
if (rp->state() < RESULT_FILES_UPLOADED) {
return true;
}
}
return false;
}
inline bool has_coproc_app(PROJECT* p, int rsc_type) {
unsigned int i;
for (i=0; iproject != p) continue;
if (avp->gpu_usage.rsc_type == rsc_type) return true;
}
return false;
}
/////////////// RSC_PROJECT_WORK_FETCH ///////////////
bool RSC_PROJECT_WORK_FETCH::compute_may_have_work(PROJECT* p, int rsc_type) {
if (dont_fetch(p, rsc_type)) return false;
if (p->rsc_defer_sched[rsc_type]) return false;
return (backoff_time < gstate.now);
}
void RSC_PROJECT_WORK_FETCH::rr_init(PROJECT* p, int rsc_type) {
may_have_work = compute_may_have_work(p, rsc_type);
fetchable_share = 0;
n_runnable_jobs = 0;
sim_nused = 0;
nused_total = 0;
deadlines_missed = 0;
}
void RSC_PROJECT_WORK_FETCH::resource_backoff(PROJECT* p, const char* name) {
if (backoff_interval) {
backoff_interval *= 2;
if (backoff_interval > WF_MAX_BACKOFF_INTERVAL) backoff_interval = WF_MAX_BACKOFF_INTERVAL;
} else {
backoff_interval = WF_MIN_BACKOFF_INTERVAL;
}
double x = (.5 + drand())*backoff_interval;
backoff_time = gstate.now + x;
if (log_flags.work_fetch_debug) {
msg_printf(p, MSG_INFO,
"[work_fetch] backing off %s %.0f sec", name, x
);
}
}
/////////////// RSC_WORK_FETCH ///////////////
RSC_PROJECT_WORK_FETCH& RSC_WORK_FETCH::project_state(PROJECT* p) {
return p->rsc_pwf[rsc_type];
}
void RSC_WORK_FETCH::rr_init() {
shortfall = 0;
nidle_now = 0;
sim_nused = 0;
total_fetchable_share = 0;
deadline_missed_instances = 0;
saturated_time = 0;
busy_time_estimator.reset();
sim_used_instances = 0;
}
void RSC_WORK_FETCH::update_stats(double sim_now, double dt, double buf_end) {
double idle = ninstances - sim_nused;
if (idle > 1e-6 && sim_now < buf_end) {
double dt2;
if (sim_now + dt > buf_end) {
dt2 = buf_end - sim_now;
} else {
dt2 = dt;
}
shortfall += idle*dt2;
}
if (idle < 1e-6) {
saturated_time = sim_now + dt - gstate.now;
}
}
void RSC_WORK_FETCH::update_busy_time(double dur, double nused) {
busy_time_estimator.update(dur, nused);
}
static bool wacky_dcf(PROJECT* p) {
if (p->dont_use_dcf) return false;
double dcf = p->duration_correction_factor;
return (dcf < 0.02 || dcf > 80.0);
}
// request this project's share of shortfall and instances.
// don't request anything if project is backed off.
//
void RSC_WORK_FETCH::set_request(PROJECT* p) {
// if backup project, fetch 1 job per idle instance
//
if (p->resource_share == 0) {
req_instances = nidle_now;
req_secs = 1;
return;
}
if (config.fetch_minimal_work) {
req_instances = ninstances;
req_secs = 1;
return;
}
RSC_PROJECT_WORK_FETCH& w = project_state(p);
double non_excl_inst = ninstances - w.ncoprocs_excluded;
if (shortfall) {
if (wacky_dcf(p)) {
// if project's DCF is too big or small,
// its completion time estimates are useless; just ask for 1 second
//
req_secs = 1;
} else {
req_secs = shortfall;
if (w.ncoprocs_excluded) {
req_secs *= non_excl_inst/ninstances;
}
}
}
double instance_share = ninstances*w.fetchable_share;
if (instance_share > non_excl_inst) {
instance_share = non_excl_inst;
}
instance_share -= w.nused_total;
req_instances = std::max(nidle_now, instance_share);
if (log_flags.work_fetch_debug) {
msg_printf(p, MSG_INFO,
"[work_fetch] set_request() for %s: ninst %d nused_total %f nidle_now %f fetch share %f req_inst %f req_secs %f",
rsc_name(rsc_type), ninstances, w.nused_total, nidle_now,
w.fetchable_share, req_instances, req_secs
);
}
if (req_instances && !req_secs) {
req_secs = 1;
}
}
// We're fetching work because some instances are starved because
// of exclusions.
// See how many N of these instances are not excluded for this project.
// Ask for N instances and for N*work_buf_min seconds.
//
void RSC_WORK_FETCH::set_request_excluded(PROJECT* p) {
RSC_PROJECT_WORK_FETCH& pwf = project_state(p);
int inst_mask = sim_excluded_instances & pwf.non_excluded_instances;
int n = 0;
for (int i=0; iresource_share == 0 || config.fetch_minimal_work) {
req_secs = 1;
} else {
req_secs = n*gstate.work_buf_total();
}
}
void RSC_WORK_FETCH::print_state(const char* name) {
msg_printf(0, MSG_INFO, "[work_fetch] --- state for %s ---", name);
msg_printf(0, MSG_INFO,
"[work_fetch] shortfall %.2f nidle %.2f saturated %.2f busy %.2f",
shortfall, nidle_now, saturated_time,
busy_time_estimator.get_busy_time()
);
//msg_printf(0, MSG_INFO, "[work_fetch] sim used inst %d sim excl inst %d", sim_used_instances, sim_excluded_instances);
for (unsigned int i=0; inon_cpu_intensive) continue;
RSC_PROJECT_WORK_FETCH& pwf = project_state(p);
bool no_rsc_pref = p->no_rsc_pref[rsc_type];
bool no_rsc_config = p->no_rsc_config[rsc_type];
bool no_rsc_apps = p->no_rsc_apps[rsc_type];
bool no_rsc_ams = p->no_rsc_ams[rsc_type];
double bt = pwf.backoff_time>gstate.now?pwf.backoff_time-gstate.now:0;
if (bt) {
sprintf(buf, " (resource backoff: %.2f, inc %.2f)",
bt, pwf.backoff_interval
);
} else {
strcpy(buf, "");
}
msg_printf(p, MSG_INFO,
"[work_fetch] fetch share %.3f%s%s%s%s%s",
pwf.fetchable_share,
buf,
no_rsc_pref?" (blocked by prefs)":"",
no_rsc_apps?" (no apps)":"",
no_rsc_ams?" (blocked by account manager)":"",
no_rsc_config?" (blocked by configuration file)":""
);
}
}
void RSC_WORK_FETCH::clear_request() {
req_secs = 0;
req_instances = 0;
}
/////////////// PROJECT_WORK_FETCH ///////////////
int PROJECT_WORK_FETCH::compute_cant_fetch_work_reason(PROJECT* p) {
if (p->non_cpu_intensive) return CANT_FETCH_WORK_NON_CPU_INTENSIVE;
if (p->suspended_via_gui) return CANT_FETCH_WORK_SUSPENDED_VIA_GUI;
if (p->master_url_fetch_pending) return CANT_FETCH_WORK_MASTER_URL_FETCH_PENDING;
if (p->dont_request_more_work) return CANT_FETCH_WORK_DONT_REQUEST_MORE_WORK;
if (p->some_download_stalled()) return CANT_FETCH_WORK_DOWNLOAD_STALLED;
if (p->some_result_suspended()) return CANT_FETCH_WORK_RESULT_SUSPENDED;
if (p->too_many_uploading_results) return CANT_FETCH_WORK_TOO_MANY_UPLOADS;
// this goes last
//
if (p->min_rpc_time > gstate.now) return CANT_FETCH_WORK_MIN_RPC_TIME;
return 0;
}
void PROJECT_WORK_FETCH::reset(PROJECT* p) {
for (int i=0; irsc_pwf[i].reset();
}
}
/////////////// WORK_FETCH ///////////////
// mark the projects from which we can fetch work
//
void WORK_FETCH::compute_cant_fetch_work_reason() {
for (unsigned int i=0; ipwf.cant_fetch_work_reason = p->pwf.compute_cant_fetch_work_reason(p);
}
}
void WORK_FETCH::rr_init() {
for (int i=0; ipwf.n_runnable_jobs = 0;
for (int j=0; jrsc_pwf[j].rr_init(p, j);
}
}
}
#if 0
// if the given project is highest-priority among the projects
// eligible for the resource, set request fields
//
void RSC_WORK_FETCH::supplement(PROJECT* pp) {
double x = pp->sched_priority;
for (unsigned i=0; ipwf.cant_fetch_work_reason) continue;
if (!project_state(p).may_have_work) continue;
RSC_PROJECT_WORK_FETCH& rpwf = project_state(p);
if (rpwf.anon_skip) continue;
if (p->sched_priority > x) {
if (log_flags.work_fetch_debug) {
msg_printf(pp, MSG_INFO,
"[work_fetch]: not requesting work for %s: %s has higher priority",
rsc_name(rsc_type), p->get_project_name()
);
}
return;
}
}
// didn't find a better project; ask for work
//
set_request(pp);
}
// we're going to ask the given project for work of the given type.
// (or -1 if none)
// Set requests for this type and perhaps other types
//
void WORK_FETCH::set_all_requests_hyst(PROJECT* p, int rsc_type) {
for (int i=0; i gstate.work_buf_total()) {
continue;
}
// don't fetch work if backup project and no idle instances
//
if (p->resource_share==0 && rsc_work_fetch[i].nidle_now==0) {
continue;
}
if (i>0 && !gpus_usable) {
continue;
}
rsc_work_fetch[i].supplement(p);
}
}
}
void WORK_FETCH::set_all_requests(PROJECT* p) {
for (int i=0; ipwf.cant_fetch_work_reason) {
sprintf(buf, "can't req work: %s",
cant_fetch_work_string(p->pwf.cant_fetch_work_reason)
);
} else {
strcpy(buf, "can req work");
}
if (p->min_rpc_time > gstate.now) {
char buf2[256];
sprintf(buf2, " (backoff: %.2f sec)", p->min_rpc_time - gstate.now);
strcat(buf, buf2);
}
msg_printf(p, MSG_INFO, "[work_fetch] REC %.3f prio %.6f %s",
p->pwf.rec,
p->sched_priority,
buf
);
}
for (int i=0; inon_cpu_intensive) {
if (!has_a_job_in_progress(p) && !p->dont_request_more_work) {
rsc_work_fetch[0].req_secs = 1;
}
return;
}
setup();
switch (p->pwf.cant_fetch_work_reason) {
case 0:
case CANT_FETCH_WORK_MIN_RPC_TIME:
break;
default:
return;
}
// if project was updated from manager and config says so,
// fetch work for a resource even if there are higher-prio projects
// able to fetch it
//
bool check_higher_priority_projects = true;
if (p->sched_rpc_pending && config.fetch_on_update) {
check_higher_priority_projects = false;
}
// For each resource, scan projects in decreasing priority,
// seeing if there's one that's higher-priority than this
// able to fetch work for the resource.
// If not, and the resource needs topping off, do so
//
for (int i=0; ipwf.cant_fetch_work_reason) {
DEBUG(msg_printf(p, MSG_INFO, "piggyback: %s can't fetch work", p2->project_name);)
continue;
}
if (rwf.can_fetch(p2) && !rwf.backed_off(p2)) {
DEBUG(msg_printf(p, MSG_INFO, "piggyback: better proj %s", p2->project_name);)
break;
}
}
if (p != p2) continue;
}
DEBUG(msg_printf(p, MSG_INFO, "piggyback: requesting %s", rsc_name(i));)
if (buffer_low) {
rwf.set_request(p);
} else {
rwf.set_request_excluded(p);
}
}
if (!requested_work()) {
p->pwf.cant_fetch_work_reason = CANT_FETCH_WORK_DONT_NEED;
}
}
// see if there's a fetchable non-CPU-intensive project without work
//
PROJECT* WORK_FETCH::non_cpu_intensive_project_needing_work() {
for (unsigned int i=0; inon_cpu_intensive) continue;
if (!p->can_request_work()) continue;
if (p->rsc_pwf[0].backoff_time > gstate.now) continue;
if (has_a_job_in_progress(p)) continue;
clear_request();
rsc_work_fetch[0].req_secs = 1;
return p;
}
return 0;
}
static bool higher_priority(PROJECT *p1, PROJECT *p2) {
return (p1->sched_priority > p2->sched_priority);
}
// check resource-level backoff
//
bool RSC_WORK_FETCH::backed_off(PROJECT* p) {
if (project_state(p).backoff_time > gstate.now) {
DEBUG(msg_printf(p, MSG_INFO, "skip: backoff");)
return true;
}
return false;
}
// a variety of checks for whether we should ask this project
// for work of this type
//
bool RSC_WORK_FETCH::can_fetch(PROJECT *p) {
// see whether work fetch for this resource is banned
// by prefs, config, project, or acct mgr
//
if (dont_fetch(p, rsc_type)) {
DEBUG(msg_printf(p, MSG_INFO, "skip: dont_fetch");)
return false;
}
RSC_PROJECT_WORK_FETCH& rpwf = project_state(p);
// if project has zero resource share,
// only fetch work if a device is idle
//
if (p->resource_share == 0 && nidle_now == 0) {
DEBUG(msg_printf(p, MSG_INFO, "skip: zero share");)
return false;
}
// if project has excluded GPUs of this type,
// we need to avoid fetching work just because there's an idle instance
// or a shortfall;
// fetching work might not alleviate either of these,
// and we'd end up fetching unbounded work.
// At the same time, we want to respect work buf params if possible.
//
// Current policy:
// don't fetch work if remaining time of this project's jobs
// exceeds work_buf_min * (#usable instances / #instances)
//
// TODO: THIS IS FAIRLY CRUDE. Making it smarter would require
// computing shortfall etc. on a per-project basis
//
int nexcl = rpwf.ncoprocs_excluded;
if (rsc_type && nexcl) {
int n_not_excluded = ninstances - nexcl;
if (rpwf.n_runnable_jobs >= n_not_excluded
&& rpwf.queue_est > (gstate.work_buf_min() * n_not_excluded)/ninstances
) {
DEBUG(msg_printf(p, MSG_INFO, "skip: too much work");)
return false;
}
}
if (rpwf.anon_skip) {
DEBUG(msg_printf(p, MSG_INFO, "skip: anon");)
return false;
}
return true;
}
// return true if there is exclusion starvation
// and this project can use the starved instances
//
bool RSC_WORK_FETCH::uses_starved_excluded_instances(PROJECT* p) {
RSC_PROJECT_WORK_FETCH& rpwf = project_state(p);
if (!sim_excluded_instances) return false;
if ((sim_excluded_instances & rpwf.non_excluded_instances) == 0) {
DEBUG(msg_printf(p, MSG_INFO, "skip: excl");)
return false;
}
return true;
}
// setup for choose_project() and piggyback()
//
void WORK_FETCH::setup() {
gstate.compute_nuploading_results();
rr_simulation();
compute_shares();
project_priority_init(true);
clear_request();
// Decrement the priority of projects that have work queued.
// Specifically, subtract
// (FLOPs queued for P)/(FLOPs of max queue)
// which will generally be between 0 and 1.
// This is a little arbitrary but I can't think of anything better.
//
double max_queued_flops = gstate.work_buf_total()*total_peak_flops();
for (unsigned int i=0; iproject;
p->sched_priority -= rp->estimated_flops_remaining()/max_queued_flops;
}
// don't request work from projects w/ > 1000 runnable jobs
//
int job_limit = 1000;
for (unsigned int i=0; ipwf.n_runnable_jobs > job_limit && !p->pwf.cant_fetch_work_reason) {
p->pwf.cant_fetch_work_reason = CANT_FETCH_WORK_TOO_MANY_RUNNABLE;
}
}
std::sort(
gstate.projects.begin(),
gstate.projects.end(),
higher_priority
);
if (log_flags.work_fetch_debug) {
print_state();
}
}
// Choose a project to fetch work from,
// and set the request fields of resource objects.
// Set p->sched_rpc_pending; if you decide not to request work
// from the project, you must clear this.
//
PROJECT* WORK_FETCH::choose_project() {
PROJECT* p;
if (log_flags.work_fetch_debug) {
msg_printf(0, MSG_INFO, "[work_fetch] entering choose_project()");
}
p = non_cpu_intensive_project_needing_work();
if (p) return p;
setup();
for (int i=0; ipwf.cant_fetch_work_reason) {
DEBUG(msg_printf(p, MSG_INFO, "skip: cfwr %d", p->pwf.cant_fetch_work_reason);)
continue;
}
// For each resource type:
// - See if we can ask this project for work of that type;
// if so set a flag so that lower-priority projects
// won't request it
// - If so, see if work is needed for this type;
// if so, set "found_project" flag
//
int rsc_index = -1;
for (int i=0; i= 0) {
bool any_request = false;
for (int i=0; i 0) {
any_request = true;
}
}
if (any_request) {
found = true;
break;
}
}
}
if (found) {
p->sched_rpc_pending = RPC_REASON_NEED_WORK;
} else {
if (log_flags.work_fetch_debug) {
msg_printf(0, MSG_INFO, "[work_fetch] No project chosen for work fetch");
}
p = NULL;
}
return p;
}
void WORK_FETCH::accumulate_inst_sec(ACTIVE_TASK* atp, double dt) {
APP_VERSION* avp = atp->result->avp;
PROJECT* p = atp->result->project;
double x = dt*avp->avg_ncpus;
p->rsc_pwf[0].secs_this_rec_interval += x;
rsc_work_fetch[0].secs_this_rec_interval += x;
int rt = avp->gpu_usage.rsc_type;
if (rt) {
x = dt*avp->gpu_usage.usage;
p->rsc_pwf[rt].secs_this_rec_interval += x;
rsc_work_fetch[rt].secs_this_rec_interval += x;
}
}
// find total and per-project resource shares for each resource
//
void WORK_FETCH::compute_shares() {
unsigned int i;
PROJECT* p;
for (i=0; inon_cpu_intensive) continue;
if (p->pwf.cant_fetch_work_reason) continue;
for (int j=0; jrsc_pwf[j].may_have_work) {
rsc_work_fetch[j].total_fetchable_share += p->resource_share;
}
}
}
for (i=0; inon_cpu_intensive) continue;
if (p->pwf.cant_fetch_work_reason) continue;
for (int j=0; jrsc_pwf[j].may_have_work) {
p->rsc_pwf[j].fetchable_share = rsc_work_fetch[j].total_fetchable_share?p->resource_share/rsc_work_fetch[j].total_fetchable_share:1;
}
}
}
}
void WORK_FETCH::request_string(char* buf) {
char buf2[256];
sprintf(buf,
"[work_fetch] request: CPU (%.2f sec, %.2f inst)",
rsc_work_fetch[0].req_secs, rsc_work_fetch[0].req_instances
);
for (int i=1; ianonymous_platform) {
for (int i=1; i work_req) {
work_req = rsc_work_fetch[i].req_secs;
}
}
}
}
fprintf(f,
" %f\n"
" %f\n"
" %f\n"
" %f\n",
work_req,
rsc_work_fetch[0].req_secs,
rsc_work_fetch[0].req_instances,
rsc_work_fetch[0].req_secs?rsc_work_fetch[0].busy_time_estimator.get_busy_time():0
);
if (log_flags.work_fetch_debug) {
char buf[256];
request_string(buf);
msg_printf(p, MSG_INFO, "%s", buf);
}
}
// we just got a scheduler reply with the given jobs; update backoffs
//
void WORK_FETCH::handle_reply(
PROJECT* p, SCHEDULER_REPLY*, vector new_results
) {
bool got_work[MAX_RSC];
bool requested_work_rsc[MAX_RSC];
for (int i=0; i 0);
}
for (unsigned int i=0; iavp->gpu_usage.rsc_type] = true;
}
for (int i=0; irsc_pwf[i].backoff_time < gstate.now) {
switch (p->sched_rpc_pending) {
case RPC_REASON_RESULTS_DUE:
case RPC_REASON_NEED_WORK:
case RPC_REASON_TRICKLE_UP:
p->rsc_pwf[i].resource_backoff(p, rsc_name(i));
}
}
}
// if we did get jobs, clear backoff
//
if (got_work[i]) {
p->rsc_pwf[i].clear_backoff();
}
}
}
// set up for initial RPC.
// arrange to always get one job, even if we don't need it or can't handle it.
// (this is probably what user wants)
//
void WORK_FETCH::set_initial_work_request(PROJECT* p) {
for (int i=0; irsc_pwf[i].ncoprocs_excluded) {
rsc_work_fetch[i].req_secs = 0;
}
}
rsc_work_fetch[i].req_instances = 0;
rsc_work_fetch[i].busy_time_estimator.reset();
}
}
// called once, at client startup
//
void WORK_FETCH::init() {
rsc_work_fetch[0].init(0, gstate.ncpus, 1);
double cpu_flops = gstate.host_info.p_fpops;
// use 20% as a rough estimate of GPU efficiency
for (int i=1; ianonymous_platform) continue;
for (int k=0; krsc_pwf[k].anon_skip = true;
}
for (j=0; jproject != p) continue;
p->rsc_pwf[avp->gpu_usage.rsc_type].anon_skip = false;
}
}
}
// clear backoff for app's resource
//
void WORK_FETCH::clear_backoffs(APP_VERSION& av) {
av.project->rsc_pwf[av.gpu_usage.rsc_type].clear_backoff();
}
////////////////////////
void CLIENT_STATE::compute_nuploading_results() {
unsigned int i;
for (i=0; inuploading_results = 0;
projects[i]->too_many_uploading_results = false;
}
for (i=0; istate() == RESULT_FILES_UPLOADING) {
rp->project->nuploading_results++;
}
}
int n = gstate.ncpus;
for (int j=1; j n) {
n = coprocs.coprocs[j].count;
}
}
n *= 2;
for (i=0; inuploading_results > n) {
projects[i]->too_many_uploading_results = true;
}
}
}
// Returns the estimated total elapsed time of this task.
// Compute this as a weighted average of estimates based on
// 1) the workunit's flops count (static estimate)
// 2) the current elapsed time and fraction done (dynamic estimate)
//
double ACTIVE_TASK::est_dur() {
if (fraction_done >= 1) return elapsed_time;
double wu_est = result->estimated_runtime();
if (fraction_done <= 0) return wu_est;
if (wu_est < elapsed_time) wu_est = elapsed_time;
double frac_est = fraction_done_elapsed_time / fraction_done;
double fd_weight = fraction_done * fraction_done;
double wu_weight = 1 - fd_weight;
double x = fd_weight*frac_est + wu_weight*wu_est;
#if 0
//if (log_flags.rr_simulation) {
msg_printf(result->project, MSG_INFO,
"[rr_sim] %s frac_est %f = %f/%f",
result->name, frac_est, fraction_done_elapsed_time, fraction_done
);
msg_printf(result->project, MSG_INFO,
"[rr_sim] %s dur: %.2f = %.3f*%.2f + %.3f*%.2f",
result->name, x, fd_weight, frac_est, wu_weight, wu_est
);
//}
#endif
return x;
}
// the fraction of time BOINC is processing
//
double CLIENT_STATE::overall_cpu_frac() {
double x = time_stats.on_frac * time_stats.active_frac;
if (x < 0.01) x = 0.01;
if (x > 1) x = 1;
return x;
}
double CLIENT_STATE::overall_gpu_frac() {
double x = time_stats.on_frac * time_stats.gpu_active_frac;
if (x < 0.01) x = 0.01;
if (x > 1) x = 1;
return x;
}
double CLIENT_STATE::overall_cpu_and_network_frac() {
double x = time_stats.on_frac * time_stats.cpu_and_network_available_frac;
if (x < 0.01) x = 0.01;
if (x > 1) x = 1;
return x;
}
// called when benchmarks change
//
void CLIENT_STATE::scale_duration_correction_factors(double factor) {
if (factor <= 0) return;
for (unsigned int i=0; idont_use_dcf) continue;
p->duration_correction_factor *= factor;
}
if (log_flags.dcf_debug) {
msg_printf(NULL, MSG_INFO,
"[dcf] scaling all duration correction factors by %f",
factor
);
}
}
// Choose a new host CPID.
// If using account manager, do scheduler RPCs
// to all acct-mgr-attached projects to propagate the CPID
//
void CLIENT_STATE::generate_new_host_cpid() {
host_info.generate_host_cpid();
for (unsigned int i=0; iattached_via_acct_mgr) {
projects[i]->sched_rpc_pending = RPC_REASON_ACCT_MGR_REQ;
projects[i]->set_min_rpc_time(now + 15, "Sending new host CPID");
}
}
}