// This file is part of BOINC. // http://boinc.berkeley.edu // Copyright (C) 2008 University of California // // BOINC is free software; you can redistribute it and/or modify it // under the terms of the GNU Lesser General Public License // as published by the Free Software Foundation, // either version 3 of the License, or (at your option) any later version. // // BOINC is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. // See the GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with BOINC. If not, see . #include "client_types.h" #include "client_msgs.h" #ifdef SIM #include "sim.h" #else #include "client_state.h" #endif #include "work_fetch.h" using std::vector; RSC_WORK_FETCH cuda_work_fetch; RSC_WORK_FETCH cpu_work_fetch; WORK_FETCH work_fetch; RSC_PROJECT_WORK_FETCH& RSC_WORK_FETCH::project_state(PROJECT* p) { switch(rsc_type) { case RSC_TYPE_CUDA: return p->cuda_pwf; default: return p->cpu_pwf; } } bool RSC_WORK_FETCH::may_have_work(PROJECT* p) { RSC_PROJECT_WORK_FETCH& w = project_state(p); return (w.backoff_time < gstate.now); } void RSC_PROJECT_WORK_FETCH::rr_init() { } void RSC_WORK_FETCH::rr_init() { shortfall = 0; nidle_now = 0; total_fetchable_share = 0; total_runnable_share = 0; } void WORK_FETCH::rr_init() { cpu_work_fetch.rr_init(); if (coproc_cuda) { cuda_work_fetch.rr_init(); } estimated_delay = 0; for (unsigned int i=0; icpu_pwf.rr_init(); if (coproc_cuda) { p->cuda_pwf.rr_init(); } } } void RSC_WORK_FETCH::accumulate_shortfall(double d_time, double nused) { double idle = ninstances - nused; printf("acc sho: idle %f dt %f\n", idle, d_time); if (idle > 0) { shortfall += idle*d_time; } } #if 0 void RSC_PROJECT_WORK_FETCH::accumulate_shortfall( RSC_WORK_FETCH& rwf, PROJECT* p, double d_time, double nused ) { double rsf = rwf.total_resource_share?p->resource_share/rwf.total_resource_share:1; double share = rwf.ninstances * rsf; printf("proj acc sho %s: rsf %f share %f nused %f dt %f\n", p->project_name, rsf, share, nused, d_time ); double x = share - nused; if (x > 0) { shortfall += d_time * x; } } #endif PROJECT* RSC_WORK_FETCH::choose_project() { PROJECT* pbest = NULL; for (unsigned i=0; inon_cpu_intensive) continue; if (!p->can_request_work()) continue; if (!may_have_work(p)) continue; if (pbest) { if (pbest->pwf.overall_debt > p->pwf.overall_debt) { continue; } } pbest = p; } return pbest; } void WORK_FETCH::set_overall_debts() { for (unsigned i=0; ipwf.overall_debt = p->cpu_pwf.debt; if (coproc_cuda) { p->pwf.overall_debt += cuda_work_fetch.speed*p->cuda_pwf.debt; } } } void RSC_WORK_FETCH::print_state(char* name) { msg_printf(0, MSG_INFO, "[wfd] %s: shortfall %.2f nidle %.2f total RS %.2f runnable RS %.2f", name, shortfall, nidle_now, total_fetchable_share, total_runnable_share ); for (unsigned int i=0; ipwf.overall_debt); } msg_printf(0, MSG_INFO, "[wfd] ------- end work fetch state -------"); } static void print_req(PROJECT* p) { msg_printf(p, MSG_INFO, "[wfd] request: CPU (%.2f sec, %.2f) CUDA (%.2f sec, %.2f)", cpu_work_fetch.req_secs, cpu_work_fetch.req_instances, cuda_work_fetch.req_secs, cuda_work_fetch.req_instances ); } void RSC_WORK_FETCH::clear_request() { req_secs = 0; req_instances = 0; } void WORK_FETCH::clear_request() { cpu_work_fetch.clear_request(); cuda_work_fetch.clear_request(); } // we're going to contact this project; decide how much work to request // void WORK_FETCH::compute_work_request(PROJECT* p) { // check if this is the project we'd ask for work anyway // PROJECT* pbest = choose_project(); if (p == pbest) return; // if not, don't request any work // clear_request(); } // choose a project to fetch work from, // and set the request fields of resource objects // PROJECT* WORK_FETCH::choose_project() { PROJECT* p = 0; gstate.rr_simulation(); set_overall_debts(); bool request_cpu = true; bool request_cuda = (coproc_cuda != NULL); // if a resource is currently idle, get work for it; // give GPU priority over CPU // if (coproc_cuda && cuda_work_fetch.nidle_now) { p = cuda_work_fetch.choose_project(); if (p) { request_cpu = false; } } if (!p && cpu_work_fetch.nidle_now) { p = cpu_work_fetch.choose_project(); if (p) { request_cuda = false; } } // if a resource has a shortfall, get work for it. // if (!p && coproc_cuda && cuda_work_fetch.shortfall) { p = cuda_work_fetch.choose_project(); } if (!p && cpu_work_fetch.shortfall) { p = cpu_work_fetch.choose_project(); } // decide how much work to request for each resource // clear_request(); if (p) { if (request_cpu) { cpu_work_fetch.set_request(p); } if (request_cuda) { cuda_work_fetch.set_request(p); } if (coproc_cuda) { coproc_cuda->req_secs = cuda_work_fetch.req_secs; coproc_cuda->req_instances = cuda_work_fetch.req_instances; } } if (log_flags.work_fetch_debug) { print_state(); if (p) { print_req(p); } else { msg_printf(0, MSG_INFO, "No project chosen for work fetch"); } } return p; } void RSC_WORK_FETCH::set_request(PROJECT* p) { RSC_PROJECT_WORK_FETCH& w = project_state(p); req_secs = gstate.work_buf_total()*w.fetchable_share; req_instances = (int)ceil(w.fetchable_share*nidle_now); } void WORK_FETCH::accumulate_inst_sec(ACTIVE_TASK* atp, double dt) { APP_VERSION* avp = atp->result->avp; PROJECT* p = atp->result->project; double x = dt*avp->avg_ncpus; p->cpu_pwf.secs_this_debt_interval += x; cpu_work_fetch.secs_this_debt_interval += x; if (coproc_cuda) { x = dt*coproc_cuda->used; p->cuda_pwf.secs_this_debt_interval += x; cuda_work_fetch.secs_this_debt_interval += x; } } void RSC_WORK_FETCH::update_debts() { unsigned int i; int nprojects = 0; double ders = 0; PROJECT* p; for (i=0; iresource_share; } double total_debt = 0; for (i=0; iresource_share/ders; w.debt += share_frac*secs_this_debt_interval - w.secs_this_debt_interval; } total_debt += w.debt; nprojects++; } // normalize so mean is zero, // double avg_debt = total_debt / nprojects; for (i=0; inon_cpu_intensive) continue; if (p->rr_sim_status.has_cpu_jobs) { cpu_work_fetch.total_runnable_share += p->resource_share; } if (p->rr_sim_status.has_cuda_jobs) { cuda_work_fetch.total_runnable_share += p->resource_share; } if (!p->can_request_work()) continue; if (p->cpu_pwf.fetchable(p)) { cpu_work_fetch.total_fetchable_share += p->resource_share; } if (coproc_cuda && p->cuda_pwf.fetchable(p)) { cuda_work_fetch.total_fetchable_share += p->resource_share; } } for (i=0; inon_cpu_intensive) continue; if (p->rr_sim_status.has_cpu_jobs) { p->cpu_pwf.runnable_share = p->resource_share/cpu_work_fetch.total_runnable_share; } if (p->rr_sim_status.has_cuda_jobs) { p->cuda_pwf.runnable_share = p->resource_share/cuda_work_fetch.total_runnable_share; } if (!p->can_request_work()) continue; if (p->cpu_pwf.fetchable(p)) { p->cpu_pwf.fetchable_share = p->resource_share/cpu_work_fetch.total_fetchable_share; } if (coproc_cuda && p->cuda_pwf.fetchable(p)) { p->cuda_pwf.fetchable_share = p->resource_share/cuda_work_fetch.total_fetchable_share; } } } // should this project be accumulating debt for this resource? // bool RSC_PROJECT_WORK_FETCH::debt_eligible(PROJECT* p) { if (backoff_time > gstate.now) return false; if (p->suspended_via_gui) return false; return true; } // can this project supply work for this resource? // bool RSC_PROJECT_WORK_FETCH::fetchable(PROJECT* p) { if (backoff_time > gstate.now) return false; return true; } void WORK_FETCH::write_request(PROJECT* p, FILE* f) { double work_req_seconds = cpu_work_fetch.req_secs; fprintf(f, " %f\n" " %f\n", cpu_work_fetch.req_secs, cpu_work_fetch.req_instances ); if (coproc_cuda) { if (cuda_work_fetch.req_secs > work_req_seconds) { work_req_seconds = cuda_work_fetch.req_secs; } } fprintf(f, " %f\n", work_req_seconds ); } // we just got a scheduler reply with the given jobs; update backoffs // void WORK_FETCH::handle_reply(PROJECT* p, vector new_results) { unsigned int i; bool got_cpu = false, got_cuda = false; // if didn't get any jobs, back off on requested resource types // if (!new_results.size()) { if (cpu_work_fetch.req_secs) { p->cpu_pwf.backoff(p, "CPU"); } if (coproc_cuda && coproc_cuda->req_secs) { p->cuda_pwf.backoff(p, "CUDA"); } return; } // if we did get jobs, clear backoff on resource types // for (i=0; iavp->ncudas) got_cuda = true; else got_cpu = true; } if (got_cpu) p->cpu_pwf.clear_backoff(); if (got_cuda) p->cuda_pwf.clear_backoff(); } void WORK_FETCH::set_initial_work_request(PROJECT* p) { cpu_work_fetch.req_secs = 1; if (coproc_cuda) { coproc_cuda->req_secs = 1; } } void WORK_FETCH::init() { cpu_work_fetch.rsc_type = RSC_TYPE_CPU; cpu_work_fetch.ninstances = gstate.ncpus; if (coproc_cuda) { cuda_work_fetch.rsc_type = RSC_TYPE_CUDA; cuda_work_fetch.ninstances = coproc_cuda->count; cuda_work_fetch.speed = coproc_cuda->flops_estimate()/gstate.host_info.p_fpops; } } void RSC_PROJECT_WORK_FETCH::backoff(PROJECT* p, char* name) { if (backoff_interval) { backoff_interval *= 2; if (backoff_interval > 86400) backoff_interval = 86400; } else { backoff_interval = 60; } backoff_time = gstate.now + backoff_interval; if (log_flags.work_fetch_debug) { msg_printf(p, MSG_INFO, "[wfd] backing off %s %f", name, backoff_interval ); } } void RSC_PROJECT_WORK_FETCH::clear_backoff() { backoff_interval = 0; backoff_time = 0; } //////////////////////// void CLIENT_STATE::compute_nuploading_results() { unsigned int i; for (i=0; inuploading_results = 0; } for (i=0; istate() == RESULT_FILES_UPLOADING) { rp->project->nuploading_results++; } } } bool PROJECT::runnable() { if (suspended_via_gui) return false; for (unsigned int i=0; iproject != this) continue; if (rp->runnable()) return true; } return false; } bool PROJECT::downloading() { if (suspended_via_gui) return false; for (unsigned int i=0; iproject != this) continue; if (rp->downloading()) return true; } return false; } bool PROJECT::some_result_suspended() { unsigned int i; for (i=0; iproject != this) continue; if (rp->suspended_via_gui) return true; } return false; } bool PROJECT::can_request_work() { if (suspended_via_gui) return false; if (master_url_fetch_pending) return false; if (min_rpc_time > gstate.now) return false; if (dont_request_more_work) return false; return true; } bool PROJECT::potentially_runnable() { if (runnable()) return true; if (can_request_work()) return true; if (downloading()) return true; return false; } bool PROJECT::nearly_runnable() { if (runnable()) return true; if (downloading()) return true; return false; } bool RSC_PROJECT_WORK_FETCH::overworked() { return debt < -gstate.global_prefs.cpu_scheduling_period(); } bool RESULT::runnable() { if (suspended_via_gui) return false; if (project->suspended_via_gui) return false; if (state() != RESULT_FILES_DOWNLOADED) return false; return true; } bool RESULT::nearly_runnable() { return runnable() || downloading(); } // Return true if the result is waiting for its files to download, // and nothing prevents this from happening soon // bool RESULT::downloading() { if (suspended_via_gui) return false; if (project->suspended_via_gui) return false; if (state() > RESULT_FILES_DOWNLOADING) return false; return true; } double RESULT::estimated_duration_uncorrected() { return wup->rsc_fpops_est/avp->flops; } // estimate how long a result will take on this host // #ifdef SIM double RESULT::estimated_duration(bool for_work_fetch) { SIM_PROJECT* spp = (SIM_PROJECT*)project; if (dual_dcf && for_work_fetch && spp->completions_ratio_mean) { return estimated_duration_uncorrected()*spp->completions_ratio_mean; } return estimated_duration_uncorrected()*project->duration_correction_factor; } #else double RESULT::estimated_duration(bool) { return estimated_duration_uncorrected()*project->duration_correction_factor; } #endif double RESULT::estimated_time_remaining(bool for_work_fetch) { if (computing_done()) return 0; ACTIVE_TASK* atp = gstate.lookup_active_task_by_result(this); if (atp) { return atp->est_time_to_completion(for_work_fetch); } return estimated_duration(for_work_fetch); } // Returns the estimated CPU time to completion (in seconds) of this task. // Compute this as a weighted average of estimates based on // 1) the workunit's flops count // 2) the current reported CPU time and fraction done // double ACTIVE_TASK::est_time_to_completion(bool for_work_fetch) { if (fraction_done >= 1) return 0; double wu_est = result->estimated_duration(for_work_fetch); if (fraction_done <= 0) return wu_est; double frac_est = (elapsed_time / fraction_done) - elapsed_time; double fraction_left = 1-fraction_done; double wu_weight = fraction_left * fraction_left; double fd_weight = 1 - wu_weight; double x = fd_weight*frac_est + wu_weight*fraction_left*wu_est; return x; } // the fraction of time a given CPU is working for BOINC // double CLIENT_STATE::overall_cpu_frac() { double running_frac = time_stats.on_frac * time_stats.active_frac; if (running_frac < 0.01) running_frac = 0.01; if (running_frac > 1) running_frac = 1; return running_frac; } // called when benchmarks change // void CLIENT_STATE::scale_duration_correction_factors(double factor) { if (factor <= 0) return; for (unsigned int i=0; iduration_correction_factor *= factor; } if (log_flags.cpu_sched_debug) { msg_printf(NULL, MSG_INFO, "[cpu_sched_debug] scaling duration correction factors by %f", factor ); } } // Choose a new host CPID. // If using account manager, do scheduler RPCs // to all acct-mgr-attached projects to propagate the CPID // void CLIENT_STATE::generate_new_host_cpid() { host_info.generate_host_cpid(); for (unsigned int i=0; iattached_via_acct_mgr) { projects[i]->sched_rpc_pending = RPC_REASON_ACCT_MGR_REQ; projects[i]->set_min_rpc_time(now + 15, "Sending new host CPID"); } } }