// This file is part of BOINC. // http://boinc.berkeley.edu // Copyright (C) 2008 University of California // // BOINC is free software; you can redistribute it and/or modify it // under the terms of the GNU Lesser General Public License // as published by the Free Software Foundation, // either version 3 of the License, or (at your option) any later version. // // BOINC is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. // See the GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with BOINC. If not, see . // Do a simulation of the current workload // with weighted round-robin (WRR) scheduling. // Include jobs that are downloading. // // For efficiency, we simulate an approximation of WRR. // We don't model time-slicing. // Instead we use a continuous model where, at a given point, // each project has a set of running jobs that uses at most all CPUs // These jobs are assumed to run at a rate proportionate to their avg_ncpus, // and each project gets CPU proportionate to its RRS. // // For coprocessors, we saturate the resource; // i.e. with 2 GPUs, we'd let a 1-GPU app and a 2-GPU app run together. // Otherwise, there'd be the possibility of computing // a nonzero shortfall inappropriately. // // Outputs are changes to global state: // - deadline misses (per-project count, per-result flag) // Deadline misses are not counted for tasks // that are too large to run in RAM right now. // - resource shortfalls (per-project and total) // - counts of resources idle now // #ifdef _WIN32 #include "boinc_win.h" #endif #ifdef SIM #include "sim.h" #else #include "client_state.h" #endif #include "coproc.h" #include "client_msgs.h" // this is here (rather than rr_sim.h) because its inline functions // refer to RESULT // struct RR_SIM_STATUS { std::vector active; double active_ncpus; double active_cudas; inline void activate(RESULT* rp, double when) { if (log_flags.rr_simulation) { msg_printf(rp->project, MSG_INFO, "[rr_sim] %.2f: starting %s", when, rp->name ); } active.push_back(rp); cpu_work_fetch.sim_nused += rp->avp->avg_ncpus; cuda_work_fetch.sim_nused += rp->avp->ncudas; } // remove *rpbest from active set, // and adjust FLOPS left for other results // inline void remove_active(RESULT* rpbest) { vector::iterator it = active.begin(); while (it != active.end()) { RESULT* rp = *it; if (rp == rpbest) { it = active.erase(it); } else { rp->rrsim_flops_left -= rp->rrsim_flops*rpbest->rrsim_finish_delay; // can be slightly less than 0 due to roundoff // if (rp->rrsim_flops_left < -1) { msg_printf(rp->project, MSG_INTERNAL_ERROR, "%s: negative FLOPs left %f", rp->name, rp->rrsim_flops_left ); } if (rp->rrsim_flops_left < 0) { rp->rrsim_flops_left = 0; } it++; } } cpu_work_fetch.sim_nused -= rpbest->avp->avg_ncpus; cuda_work_fetch.sim_nused -= rpbest->avp->ncudas; } RR_SIM_STATUS() { active_ncpus = 0; active_cudas = 0; } ~RR_SIM_STATUS() {} }; void RR_SIM_PROJECT_STATUS::activate(RESULT* rp) { active.push_back(rp); rp->project->cpu_pwf.sim_nused += rp->avp->avg_ncpus; rp->project->cuda_pwf.sim_nused += rp->avp->ncudas; } void RR_SIM_PROJECT_STATUS::remove_active(RESULT* rp) { std::vector::iterator it = active.begin(); while (it != active.end()) { if (*it == rp) { it = active.erase(it); } else { it++; } } rp->project->cpu_pwf.sim_nused -= rp->avp->avg_ncpus; rp->project->cuda_pwf.sim_nused -= rp->avp->ncudas; } // estimate the rate (FLOPS) that this job will get long-term // with weighted round-robin scheduling // void set_rrsim_flops(RESULT* rp) { // if it's a coproc job, use app version estimate if (rp->uses_coprocs()) { rp->rrsim_flops = rp->avp->flops; return; } PROJECT* p = rp->project; // first, estimate how many CPU seconds per second this job would get // running with other jobs of this project, ignoring other factors // double x = 1; if (p->cpu_pwf.sim_nused > gstate.ncpus) { x = gstate.ncpus/p->cpu_pwf.sim_nused; } double r1 = x*rp->avp->avg_ncpus; // if the project's total CPU usage is more than its share, scale // double share_cpus = p->cpu_pwf.runnable_share*gstate.ncpus; double r2 = r1; if (p->cpu_pwf.sim_nused > share_cpus) { r2 *= (share_cpus / p->cpu_pwf.sim_nused); } // scale by overall CPU availability // double r3 = r2 * gstate.overall_cpu_frac(); rp->rrsim_flops = r3 * gstate.host_info.p_fpops; #if 0 if (log_flags.rr_simulation) { msg_printf(p, MSG_INFO, "[rr_sim] set_rrsim_flops: %f (r1 %f r2 %f r3 %f)", rp->rrsim_flops, r1, r2, r3 ); } #endif } void CLIENT_STATE::print_deadline_misses() { unsigned int i; RESULT* rp; PROJECT* p; for (i=0; irr_sim_misses_deadline) { msg_printf(rp->project, MSG_INFO, "[cpu_sched_debug] Result %s projected to miss deadline.", rp->name ); } } for (i=0; irr_sim_status.deadlines_missed) { msg_printf(p, MSG_INFO, "[cpu_sched_debug] Project has %d projected deadline misses", p->rr_sim_status.deadlines_missed ); } } } void CLIENT_STATE::rr_simulation() { PROJECT* p, *pbest; RESULT* rp, *rpbest; RR_SIM_STATUS sim_status; unsigned int i; double ar = available_ram(); work_fetch.rr_init(); if (log_flags.rr_simulation) { msg_printf(0, MSG_INFO, "[rr_sim] rr_sim start: work_buf_total %.2f", work_buf_total() ); } for (i=0; inon_cpu_intensive) continue; p->rr_sim_status.clear(); } // Decide what jobs to include in the simulation, // and pick the ones that are initially running // for (i=0; inearly_runnable()) continue; if (rp->some_download_stalled()) continue; if (rp->project->non_cpu_intensive) continue; rp->rrsim_flops_left = rp->estimated_flops_remaining(); if (rp->rrsim_flops_left <= 0) continue; p = rp->project; if (rp->uses_cuda()) { p->cuda_pwf.has_runnable_jobs = true; if (cuda_work_fetch.sim_nused < coproc_cuda->count) { sim_status.activate(rp, 0); p->rr_sim_status.activate(rp); } else { cuda_work_fetch.pending.push_back(rp); } } else { p->cpu_pwf.has_runnable_jobs = true; if (p->cpu_pwf.sim_nused < ncpus) { sim_status.activate(rp, 0); p->rr_sim_status.activate(rp); } else { p->rr_sim_status.add_pending(rp); } } rp->rr_sim_misses_deadline = false; } // note the number of idle instances // cpu_work_fetch.nidle_now = ncpus - cpu_work_fetch.sim_nused; if (cpu_work_fetch.nidle_now < 0) cpu_work_fetch.nidle_now = 0; if (coproc_cuda) { cuda_work_fetch.nidle_now = coproc_cuda->count - cuda_work_fetch.sim_nused; if (cuda_work_fetch.nidle_now < 0) cuda_work_fetch.nidle_now = 0; } work_fetch.compute_shares(); // Simulation loop. Keep going until all work done // double buf_end = now + work_buf_total(); double sim_now = now; while (sim_status.active.size()) { // compute finish times and see which result finishes first // rpbest = NULL; for (i=0; irrsim_finish_delay = rp->rrsim_flops_left/rp->rrsim_flops; if (!rpbest || rp->rrsim_finish_delay < rpbest->rrsim_finish_delay) { rpbest = rp; } } pbest = rpbest->project; if (log_flags.rr_simulation) { msg_printf(pbest, MSG_INFO, "[rr_sim] %.2f: %s finishes after %.2f (%.2fG/%.2fG)", sim_now - now, rpbest->name, rpbest->rrsim_finish_delay, rpbest->rrsim_flops_left/1e9, rpbest->rrsim_flops/1e9 ); } // "rpbest" is first result to finish. Does it miss its deadline? // double diff = sim_now + rpbest->rrsim_finish_delay - ((rpbest->computation_deadline()-now)*CPU_PESSIMISM_FACTOR + now); if (diff > 0) { ACTIVE_TASK* atp = lookup_active_task_by_result(rpbest); if (atp && atp->procinfo.working_set_size_smoothed > ar) { if (log_flags.rr_simulation) { msg_printf(pbest, MSG_INFO, "[rr_sim] %s misses deadline but too large to run", rpbest->name ); } } else { rpbest->rr_sim_misses_deadline = true; pbest->rr_sim_status.deadlines_missed++; if (log_flags.rr_simulation) { msg_printf(pbest, MSG_INFO, "[rr_sim] %s misses deadline by %.2f", rpbest->name, diff ); } } } double end_time = sim_now + rpbest->rrsim_finish_delay; double x = end_time - gstate.now; cpu_work_fetch.update_estimated_delay(x); if (coproc_cuda) { cuda_work_fetch.update_estimated_delay(x); } // increment resource shortfalls // if (sim_now < buf_end) { if (end_time > buf_end) end_time = buf_end; double d_time = end_time - sim_now; cpu_work_fetch.accumulate_shortfall(d_time); if (coproc_cuda) { cuda_work_fetch.accumulate_shortfall(d_time); } } sim_status.remove_active(rpbest); pbest->rr_sim_status.remove_active(rpbest); if (rpbest->uses_cuda()) { while (1) { if (cuda_work_fetch.sim_nused >= coproc_cuda->count) break; if (!cuda_work_fetch.pending.size()) break; RESULT* rp = cuda_work_fetch.pending[0]; cuda_work_fetch.pending.erase(cuda_work_fetch.pending.begin()); sim_status.activate(rp, sim_now-now); pbest->rr_sim_status.activate(rp); } } else { while (1) { if (pbest->cpu_pwf.sim_nused >= ncpus) break; RESULT* rp = pbest->rr_sim_status.get_pending(); if (!rp) break; sim_status.activate(rp, sim_now-now); pbest->rr_sim_status.activate(rp); } } sim_now += rpbest->rrsim_finish_delay; } // if simulation ends before end of buffer, take the tail into account // if (sim_now < buf_end) { double d_time = buf_end - sim_now; cpu_work_fetch.accumulate_shortfall(d_time); if (coproc_cuda) { cuda_work_fetch.accumulate_shortfall(d_time); } } }