boinc/samples/nvcuda/cuda_kernel.cu

133 lines
4.5 KiB
Plaintext
Raw Normal View History

// This file is part of BOINC.
// http://boinc.berkeley.edu
// Copyright (C) 2008 University of California
//
// BOINC is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License
// as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// BOINC is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with BOINC. If not, see <http://www.gnu.org/licenses/>.
//
// This file contains kernel definition for matrix inversion. The external function
// "invert" serves as an interface between cuda_kernel.cu and cuda.cpp
//
// See http://boinc.berkeley.edu/trac/wiki/GPUApp for any compiling issues
// Contributor: Tuan Le (tuanle86@berkeley.edu)
2010-06-10 17:44:32 +00:00
// When VERIFY is defined, the sum of squared errors is calculated between the
// identity matrix and the product A * incerse(A). For debugging...
//#define VERIFY 1
#include <stdio.h>
2010-06-10 17:44:32 +00:00
#include <math.h>
#include <time.h>
2010-07-13 21:36:29 +00:00
#include "cuda_config.h"
2010-06-10 17:44:32 +00:00
__global__ void GEStep1A(REAL * AI, int i, int n2, int lda2) {
int k = blockIdx.x * blockDim.x + threadIdx.x;
if (k>i && k < n2 && AI[i*lda2+k]!=0) {
REAL multiplyer = -AI[i*lda2+k]/AI[i*lda2+i];
int n = n2 / 2;
for (int j = i+1; j < n; j++) {
AI[j*lda2+k] += multiplyer*AI[j*lda2+i];
}
2010-06-10 17:44:32 +00:00
}
}
2010-06-10 17:44:32 +00:00
__global__ void GEStep2(REAL * AI,REAL diag,int i, int n2, int lda2) {
int k = blockIdx.x * blockDim.x + threadIdx.x;
if (k < n2) {
AI[i*lda2+k] /= diag;
}
2010-06-10 17:44:32 +00:00
}
__global__ void GEStep3(REAL * AI,int i, int n2, int lda2) {
int k = blockIdx.x * blockDim.x + threadIdx.x;
if (k > i && k < n2) {
REAL multiplyer = -AI[i*lda2+k];
for (int j = 0; j < i; j++) {
AI[j*lda2+k] += multiplyer*AI[j*lda2+i];
}
2010-06-10 17:44:32 +00:00
}
}
/* Helper function for invert. Kernel calls are made in this function */
2010-06-10 17:44:32 +00:00
void invertge(REAL * AI_d, int lda, int n) {
int lda2 = lda * 2;
// perform elementary row operations till A in AI becomes identity matrix
for (int i = 0; i < n; i++) {
GEStep1A<<<(int)ceil((float)(1+(2*n-1)/32)),32>>>(AI_d,i,n*2, lda2);
CUDACHECK;
cudaThreadSynchronize();
}
2010-06-10 17:44:32 +00:00
for (int i = n-1; i >= 0; i--) {
REAL diag = 1.0;
SAFECALL(cudaMemcpy(&diag, &AI_d[i*lda2+i], sizeof(REAL), cudaMemcpyDeviceToHost));
GEStep2<<<(int)ceil((float)(1+(n*2-1)/32)),32>>>(AI_d,diag,i,n*2, lda2);
CUDACHECK;
2010-06-10 17:44:32 +00:00
GEStep3<<<(int)ceil((float)(1+(n*2-1)/32)),32>>>(AI_d,i,n*2, lda2);
CUDACHECK;
cudaThreadSynchronize();
CUDACHECK;
}
}
2010-06-10 17:44:32 +00:00
/* inverts nxn matrix A and stores result back in A */
extern void invert(REAL * A, int n) {
fprintf(stderr,"starting inversion n = %d ", n);
2010-06-10 17:44:32 +00:00
volatile clock_t gputime, gputime0;
gputime=clock();
gputime0 = gputime;
int lda = ((n+15)&~15|16);
REAL * AI = (REAL *)malloc(sizeof(REAL)*(n*lda*2));
memset(AI,0,sizeof(REAL)*n*lda*2);
for (int i = 0; i < n; i++) {
memcpy(&AI[lda*i*2], &A[n*i], sizeof(REAL)*n);
AI[lda*i*2+n+i] = 1;
}
2010-06-10 17:44:32 +00:00
REAL * AI_d;
SAFECALL(cudaMalloc((void **) &AI_d, sizeof(REAL)*n*lda*2));
SAFECALL(cudaMemcpy(AI_d, AI, sizeof(REAL)*n*lda*2, cudaMemcpyHostToDevice));
2010-06-10 17:44:32 +00:00
invertge(AI_d, lda, n);
SAFECALL(cudaMemcpy(AI, AI_d, sizeof(REAL)*n*lda*2, cudaMemcpyDeviceToHost));
cudaFree(AI_d);
gputime=clock()-gputime;fprintf(stderr, " %7.1f ms ",gputime/1.e3f);
fprintf(stderr, " %7.2f Gflops", 1e-3*(3.0)*n*n*n/3.0/gputime);
2010-06-10 17:44:32 +00:00
#ifdef VERIFY
// let's verify that
REAL error=0.0;
// multiply inverse*xcopy, should be Identity matrix
for (int k = 0; k < n; k++) {
for (int j = 0; j < n; j++) {
REAL sum = 0;
for (int i = 0; i < n; i++) {
sum += AI[j*lda*2+n+i]*A[i*n+k];
}
if (j!=k) {
error += sum * sum;
} else {
error += (1.0-sum) * (1.0-sum);
}
}
}
2010-06-10 17:44:32 +00:00
fprintf(stderr, " %6.2f SSE", error);
#endif
for (int i = 0; i < n; i++) {
memcpy(&A[n*i], &AI[lda*i*2+n], sizeof(REAL)*n);
}
free(AI);
fprintf(stderr," done!\n");
}