boinc/api/boinc_api.C

1039 lines
30 KiB
C++
Raw Normal View History

// Berkeley Open Infrastructure for Network Computing
// http://boinc.berkeley.edu
// Copyright (C) 2005 University of California
//
// This is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation;
// either version 2.1 of the License, or (at your option) any later version.
//
// This software is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU Lesser General Public License for more details.
//
// To view the GNU Lesser General Public License visit
// http://www.gnu.org/copyleft/lesser.html
// or write to the Free Software Foundation, Inc.,
// 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
// Code that's in the BOINC app library (but NOT in the core client)
// graphics-related code goes in graphics_api.C, not here
#if defined(_WIN32) && !defined(__STDWX_H__) && !defined(_BOINC_WIN_) && !defined(_AFX_STDAFX_H_)
#include "boinc_win.h"
#endif
#ifdef _WIN32
#include "version.h"
#else
#include "config.h"
#include <cstdlib>
#include <cstdio>
#include <cstdarg>
#include <sys/types.h>
#include <errno.h>
#include <unistd.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <pthread.h>
#ifndef __EMX__
#include <sched.h>
#endif
using namespace std;
#endif
#include "diagnostics.h"
#include "parse.h"
#include "shmem.h"
#include "util.h"
#include "filesys.h"
#include "mem_usage.h"
#include "error_numbers.h"
#include "app_ipc.h"
#include "boinc_api.h"
#ifdef __APPLE__
#include "mac_backtrace.h"
#endif
// The BOINC API has various functions:
// - check heartbeat from core client, exit if none
// - handle trickle up/down messages
// - report CPU time and fraction done to the core client.
// Implementation notes:
// Unix: getting CPU time and suspend/resume have to be done
// in the worker thread, so we use a SIGALRM signal handler.
// However, many library functions and system calls
// are not "asynch signal safe": see, e.g.
// http://www.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html#tag_02_04_03
// (e.g. sprintf() in a signal handler hangs Mac OS X)
// so we do as little as possible in the signal handler,
// and do the rest in a separate "timer thread".
// Terminology:
// The processing of a result can be divided
// into multiple "episodes" (executions of the app),
// each of which resumes from the checkpointed state of the previous episode.
// Unless otherwise noted, "CPU time" refers to the sum over all episodes
// (not counting the part after the last checkpoint in an episode).
// All variables that are accessed by two threads (i.e. worker and timer)
// MUST be declared volatile.
static APP_INIT_DATA aid;
static FILE_LOCK file_lock;
APP_CLIENT_SHM* app_client_shm = 0;
static volatile int time_until_checkpoint;
// time until enable checkpoint
static volatile int time_until_fraction_done_update;
// time until report fraction done to core client
static volatile double fraction_done;
static volatile double last_checkpoint_cpu_time;
static volatile bool ready_to_checkpoint = false;
static volatile bool in_critical_section = false;
static volatile double last_wu_cpu_time;
static volatile bool standalone = false;
static volatile double initial_wu_cpu_time;
static volatile bool have_new_trickle_up = false;
static volatile bool have_trickle_down = true;
// on first call, scan slot dir for msgs
static volatile int heartbeat_giveup_time;
// interrupt count value at which to give up on core client
static volatile bool heartbeat_active;
// if false, suppress heartbeat mechanism
#ifdef _WIN32
static volatile int nrunning_ticks = 0;
#endif
static volatile int interrupt_count = 0;
// number of timer interrupts
// used to measure elapsed time in a way that's
// not affected by user changing system clock,
// and that doesn't have big jumps around hibernation
static double fpops_per_cpu_sec = 0;
static double fpops_cumulative = 0;
static double intops_per_cpu_sec = 0;
static double intops_cumulative = 0;
static int want_network = 0;
static int have_network = 1;
bool g_sleep = false;
// simulate unresponsive app by setting to true (debugging)
#define TIMER_PERIOD 1
// period of worker-thread timer interrupts.
// This determines the resolution of fraction done and CPU time reporting
// to the core client, and of checkpoint enabling.
// It doesn't influence graphics, so 1 sec is enough.
#define HEARTBEAT_GIVEUP_PERIOD (30/TIMER_PERIOD)
// quit if no heartbeat from core in this #interrupts
#define HEARTBEAT_TIMEOUT_PERIOD 35
// quit if we cannot aquire slot resource in this #secs
#ifdef _WIN32
static HANDLE hSharedMem;
HANDLE worker_thread_handle;
// used to suspend worker thread, and to measure its CPU time
#else
static pthread_t timer_thread_handle;
static struct rusage worker_thread_ru;
#endif
static BOINC_OPTIONS options;
static volatile BOINC_STATUS boinc_status;
// vars related to intermediate file upload
struct UPLOAD_FILE_STATUS {
std::string name;
int status;
};
static bool have_new_upload_file;
static std::vector<UPLOAD_FILE_STATUS> upload_file_status;
static int setup_shared_mem() {
if (standalone) {
fprintf(stderr, "Standalone mode, so not using shared memory.\n");
return 0;
}
app_client_shm = new APP_CLIENT_SHM;
#ifdef _WIN32
char buf[256];
sprintf(buf, "%s%s", SHM_PREFIX, aid.shmem_seg_name);
hSharedMem = attach_shmem(buf, (void**)&app_client_shm->shm);
if (hSharedMem == NULL) {
delete app_client_shm;
app_client_shm = NULL;
}
#else
if (attach_shmem(aid.shmem_seg_name, (void**)&app_client_shm->shm)) {
delete app_client_shm;
app_client_shm = NULL;
}
#endif
if (app_client_shm == NULL) return -1;
return 0;
}
// Return CPU time of worker thread.
// This may be called from other threads
//
static int boinc_worker_thread_cpu_time(double& cpu) {
static double last_cpu=0;
static time_t last_time=0;
time_t now = time(0);
double time_diff = now-last_time;
#ifdef _WIN32
int retval;
if (options.all_threads_cpu_time) {
retval = boinc_process_cpu_time(cpu);
} else {
retval = boinc_thread_cpu_time(worker_thread_handle, cpu);
}
if (retval) {
cpu = nrunning_ticks * TIMER_PERIOD; // for Win9x
}
#else
if (!pthread_mutex_lock(&getrusage_mutex)) {
cpu = (double)worker_thread_ru.ru_utime.tv_sec
+ (((double)worker_thread_ru.ru_utime.tv_usec)/1000000.0);
cpu += (double)worker_thread_ru.ru_stime.tv_sec
+ (((double)worker_thread_ru.ru_stime.tv_usec)/1000000.0);
pthread_mutex_unlock(&getrusage_mutex);
}
#endif
double cpu_diff = cpu - last_cpu;
if (cpu_diff>(time_diff+1)) {
// fprintf(stderr,"CPU time incrementing faster than real time. Correcting.\n");
cpu = last_cpu+time_diff;
}
if (time_diff != 0) {
last_cpu=cpu;
last_time=now;
}
return 0;
}
// communicate to the core client (via shared mem)
// the current CPU time and fraction done
//
static bool update_app_progress(double cpu_t, double cp_cpu_t) {
char msg_buf[MSG_CHANNEL_SIZE], buf[256];
if (standalone) return true;
sprintf(msg_buf,
"<current_cpu_time>%.15e</current_cpu_time>\n"
"<checkpoint_cpu_time>%.15e</checkpoint_cpu_time>\n",
cpu_t, cp_cpu_t
);
if (want_network) {
strcat(msg_buf, "<want_network>1</want_network>\n");
}
if (fraction_done >= 0) {
double range = aid.fraction_done_end - aid.fraction_done_start;
double fdone = aid.fraction_done_start + fraction_done*range;
sprintf(buf, "<fraction_done>%2.8f</fraction_done>\n", fdone);
strcat(msg_buf, buf);
}
if (fpops_per_cpu_sec) {
sprintf(buf, "<fpops_per_cpu_sec>%f</fpops_per_cpu_sec>\n", fpops_per_cpu_sec);
strcat(msg_buf, buf);
}
if (fpops_cumulative) {
sprintf(buf, "<fpops_cumulative>%f</fpops_cumulative>\n", fpops_cumulative);
strcat(msg_buf, buf);
}
if (intops_per_cpu_sec) {
sprintf(buf, "<intops_per_cpu_sec>%f</intops_per_cpu_sec>\n", intops_per_cpu_sec);
strcat(msg_buf, buf);
}
if (intops_cumulative) {
sprintf(buf, "<intops_cumulative>%f</intops_cumulative>\n", intops_cumulative);
strcat(msg_buf, buf);
}
return app_client_shm->shm->app_status.send_msg(msg_buf);
}
// the following 2 functions are used for apps without graphics
//
int boinc_init() {
int retval;
if (!diagnostics_is_initialized()) {
retval = boinc_init_diagnostics(BOINC_DIAG_USEDEFULATS);
if (retval) return retval;
}
boinc_options_defaults(options);
return boinc_init_options(&options);
}
int boinc_init_options(BOINC_OPTIONS* opt) {
int retval;
if (!diagnostics_is_initialized()) {
retval = boinc_init_diagnostics(BOINC_DIAG_USEDEFULATS);
if (retval) return retval;
}
retval = boinc_init_options_general(*opt);
if (retval) return retval;
return set_worker_timer();
}
// the following can be called by either graphics or worker thread
//
int boinc_init_options_general(BOINC_OPTIONS& opt) {
int retval;
options = opt;
boinc_status.no_heartbeat = false;
boinc_status.suspended = false;
boinc_status.quit_request = false;
boinc_status.abort_request = false;
if (options.main_program) {
// make sure we're the only app running in this slot
//
retval = file_lock.lock(LOCKFILE);
if (retval) {
// give any previous occupant a chance to timeout and exit
//
boinc_sleep(HEARTBEAT_TIMEOUT_PERIOD);
retval = file_lock.lock(LOCKFILE);
}
if (retval) {
fprintf(stderr, "Can't acquire lockfile - exiting\n");
boinc_exit(0); // not un-recoverable ==> status=0
}
}
retval = boinc_parse_init_data_file();
if (retval) {
standalone = true;
} else {
retval = setup_shared_mem();
if (retval) {
fprintf(stderr,
"Can't set up shared mem: %d\n"
"Will run in standalone mode.\n",
retval
);
standalone = true;
}
}
// copy the WU CPU time to a separate var,
// since we may reread the structure again later.
//
initial_wu_cpu_time = aid.wu_cpu_time;
// the following may not be needed, but do it anyway
//
fraction_done = -1;
time_until_checkpoint = (int)aid.checkpoint_period;
last_checkpoint_cpu_time = aid.wu_cpu_time;
time_until_fraction_done_update = (int)aid.fraction_done_update_period;
last_wu_cpu_time = aid.wu_cpu_time;
heartbeat_active = !standalone;
heartbeat_giveup_time = interrupt_count + HEARTBEAT_GIVEUP_PERIOD;
return 0;
}
int boinc_get_status(BOINC_STATUS *s) {
s->no_heartbeat = boinc_status.no_heartbeat;
s->suspended = boinc_status.suspended;
s->quit_request = boinc_status.quit_request;
s->reread_init_data_file = boinc_status.reread_init_data_file;
s->abort_request = boinc_status.abort_request;
s->working_set_size = boinc_status.working_set_size;
s->max_working_set_size = boinc_status.max_working_set_size;
return 0;
}
// if we have any new trickle-ups or file upload requests,
// send a message describing them
//
static void send_trickle_up_msg() {
char buf[MSG_CHANNEL_SIZE];
BOINCINFO("Sending Trickle Up Message");
strcpy(buf, "");
if (have_new_trickle_up) {
strcat(buf, "<have_new_trickle_up/>\n");
}
if (have_new_upload_file) {
strcat(buf, "<have_new_upload_file/>\n");
}
if (strlen(buf)) {
if (app_client_shm->shm->trickle_up.send_msg(buf)) {
have_new_trickle_up = false;
have_new_upload_file = false;
}
}
}
// NOTE: a non-zero status tells the core client that we're exiting with
// an "unrecoverable error", which will be reported back to server.
// A zero exit-status tells the client we've successfully finished the result.
//
// This function can be called from any thread. (Timer, Worker, and Graphics)
//
int boinc_finish(int status) {
if (options.send_status_msgs) {
double total_cpu;
boinc_worker_thread_cpu_time(total_cpu);
total_cpu += initial_wu_cpu_time;
// NOTE: the app_status slot may already contain a message.
// So retry a couple of times.
//
for (int i=0; i<3; i++) {
if (update_app_progress(total_cpu, total_cpu)) break;
boinc_sleep(1.0);
}
}
if (options.handle_trickle_ups) {
send_trickle_up_msg();
}
if (options.main_program && status==0) {
FILE* f = fopen(BOINC_FINISH_CALLED_FILE, "w");
if (f) fclose(f);
}
if (options.send_status_msgs) {
aid.wu_cpu_time = last_checkpoint_cpu_time;
boinc_write_init_data_file(aid);
}
boinc_exit(status);
return(0); // doh... we never get here
}
// unlock the lockfile and call the appropriate exit function
// This is called from the worker, timer, and graphics threads.
//
void boinc_exit(int status) {
// Unlock the lock file
//
file_lock.unlock(LOCKFILE);
// flush all the output buffers
//
fflush(NULL);
// Cleanup the diagnostics allocations and stuff. Dump any memory
// leaks if it is a debug build.
//
boinc_finish_diag();
// various platforms have various issues with shutting down
// a process while an unspecified number of threads are still
// executing or triggering endless exit()/atexit() loops. Use
// alternate methods to shutdown the application on those
// platforms.
BOINCINFO("Exit Status: %d", status);
#if defined(_WIN32)
// Halts all the threads and then cleans up.
TerminateProcess(GetCurrentProcess(), status);
#elif defined(__APPLE_CC__)
// stops endless exit()/atexit() loops.
_exit(status);
#else
// POSIX exit call.
exit(status);
#endif
}
int boinc_is_standalone() {
if (standalone) return 1;
return 0;
}
// parse the init data file.
// This is done at startup, and also if a "reread prefs" message is received
//
int boinc_parse_init_data_file() {
FILE* f;
int retval;
// in principle should free project_preferences here if it's nonzero
memset(&aid, 0, sizeof(aid));
strcpy(aid.user_name, "");
strcpy(aid.team_name, "");
aid.wu_cpu_time = 0;
aid.user_total_credit = 0;
aid.user_expavg_credit = 0;
aid.host_total_credit = 0;
aid.host_expavg_credit = 0;
aid.checkpoint_period = DEFAULT_CHECKPOINT_PERIOD;
aid.fraction_done_update_period = DEFAULT_FRACTION_DONE_UPDATE_PERIOD;
if (!boinc_file_exists(INIT_DATA_FILE)) {
fprintf(stderr,
"Can't open init data file - running in standalone mode\n"
);
return ERR_FOPEN;
}
f = boinc_fopen(INIT_DATA_FILE, "r");
retval = parse_init_data_file(f, aid);
fclose(f);
if (retval) {
fprintf(stderr,
"Can't parse init data file - running in standalone mode\n"
);
return retval;
}
return 0;
}
int boinc_write_init_data_file(APP_INIT_DATA& x) {
FILE* f = boinc_fopen(INIT_DATA_FILE, "w");
if (!f) return ERR_FOPEN;
int retval = write_init_data_file(f, x);
fclose(f);
return retval;
}
int boinc_report_app_status(
double cpu_time,
double checkpoint_cpu_time,
double _fraction_done
) {
char msg_buf[MSG_CHANNEL_SIZE];
if (standalone) return 0;
sprintf(msg_buf,
"<current_cpu_time>%10.4f</current_cpu_time>\n"
"<checkpoint_cpu_time>%.15e</checkpoint_cpu_time>\n"
"<fraction_done>%2.8f</fraction_done>\n",
cpu_time,
checkpoint_cpu_time,
_fraction_done
);
app_client_shm->shm->app_status.send_msg(msg_buf);
return 0;
}
int boinc_get_init_data_p(APP_INIT_DATA* app_init_data) {
*app_init_data = aid;
return 0;
}
int boinc_get_init_data(APP_INIT_DATA& app_init_data) {
app_init_data = aid;
return 0;
}
// this can be called from the graphics thread
//
int boinc_wu_cpu_time(double& cpu_t) {
cpu_t = last_wu_cpu_time;
return 0;
}
// this can be called from the graphics thread
//
int suspend_activities() {
BOINCINFO("Received Suspend Message");
//fprintf(stderr, "suspending; %f %d\n", last_wu_cpu_time, options.direct_process_action);
#ifdef _WIN32
if (options.direct_process_action) {
// in Windows this is called from a separate "timer thread",
// and Windows lets us suspend the worker thread
//
SuspendThread(worker_thread_handle);
}
#endif
return 0;
}
// this can be called from the graphics thread
//
int resume_activities() {
BOINCINFO("Received Resume Message");
#ifdef _WIN32
//fprintf(stderr, "resuming; %f %d\n", last_wu_cpu_time, options.direct_process_action);
if (options.direct_process_action) {
// in Windows this is called from a separate "timer thread",
// and Windows lets us resume the worker thread
//
ResumeThread(worker_thread_handle);
}
#endif
return 0;
}
// this can be called from the graphics thread
//
int restore_activities() {
int retval;
if (boinc_status.suspended) {
retval = suspend_activities();
} else {
retval = resume_activities();
}
return retval;
}
static void handle_heartbeat_msg() {
char buf[MSG_CHANNEL_SIZE];
double dtemp;
if (app_client_shm->shm->heartbeat.get_msg(buf)) {
if (match_tag(buf, "<heartbeat/>")) {
heartbeat_giveup_time = interrupt_count + HEARTBEAT_GIVEUP_PERIOD;
}
if (match_tag(buf, "<enable_heartbeat/>")) {
BOINCINFO("Enabling heartbeat");
heartbeat_active = true;
}
if (match_tag(buf, "<disable_heartbeat/>")) {
BOINCINFO("Disabling heartbeat");
heartbeat_active = false;
}
if (parse_double(buf, "<wss>", dtemp)) {
boinc_status.working_set_size = dtemp;
}
if (parse_double(buf, "<max_wss>", dtemp)) {
boinc_status.max_working_set_size = dtemp;
}
}
}
static void handle_upload_file_status() {
char path[256], buf[256], log_name[256];
std::string filename;
int status;
relative_to_absolute("", path);
DirScanner dirscan(path);
while (dirscan.scan(filename)) {
strcpy(buf, filename.c_str());
if (strstr(buf, UPLOAD_FILE_STATUS_PREFIX) != buf) continue;
strcpy(log_name, buf+strlen(UPLOAD_FILE_STATUS_PREFIX));
FILE* f = boinc_fopen(filename.c_str(), "r");
if (!f) {
fprintf(stderr, "handle_file_upload_status: can't open %s\n", filename.c_str());
continue;
}
fgets(buf, 256, f);
fclose(f);
if (parse_int(buf, "<status>", status)) {
UPLOAD_FILE_STATUS uf;
uf.name = std::string(log_name);
uf.status = status;
upload_file_status.push_back(uf);
} else {
fprintf(stderr, "handle_upload_file_status: can't parse %s\n", buf);
}
}
}
// handle trickle and file upload messages
//
static void handle_trickle_down_msg() {
char buf[MSG_CHANNEL_SIZE];
if (app_client_shm->shm->trickle_down.get_msg(buf)) {
BOINCINFO("Received Trickle Down Message");
if (match_tag(buf, "<have_trickle_down/>")) {
have_trickle_down = true;
}
if (match_tag(buf, "<upload_file_status/>")) {
handle_upload_file_status();
}
}
}
static void handle_process_control_msg() {
char buf[MSG_CHANNEL_SIZE];
if (app_client_shm->shm->process_control_request.get_msg(buf)) {
//fprintf(stderr, "%f: got %s\n", dtime(), buf);
if (match_tag(buf, "<suspend/>")) {
boinc_status.suspended = true;
suspend_activities();
}
if (match_tag(buf, "<resume/>")) {
boinc_status.suspended = false;
resume_activities();
}
if (match_tag(buf, "<quit/>")) {
BOINCINFO("Received quit message");
boinc_status.quit_request = true;
if (options.direct_process_action) {
boinc_exit(0);
}
}
if (match_tag(buf, "<abort/>")) {
BOINCINFO("Received abort message");
boinc_status.abort_request = true;
if (options.direct_process_action) {
diagnostics_set_aborted_via_gui();
#if defined(_WIN32)
// Cause a controlled assert and dump the callstacks.
DebugBreak();
#elif defined(__APPLE__)
PrintBacktrace();
#endif
boinc_exit(ERR_ABORTED_VIA_GUI);
}
}
if (match_tag(buf, "<reread_app_info/>")) {
boinc_status.reread_init_data_file = true;
}
if (match_tag(buf, "<network_available/>")) {
have_network = 1;
}
}
}
static void worker_timer(int /*a*/) {
if (g_sleep) return;
interrupt_count++;
if (!ready_to_checkpoint) {
time_until_checkpoint -= TIMER_PERIOD;
if (time_until_checkpoint <= 0) {
ready_to_checkpoint = true;
}
}
//fprintf(stderr, "worker_timer: in_critical_section %d\n", in_critical_section);
// handle messages from the core client
//
if (app_client_shm) {
if (options.check_heartbeat) {
handle_heartbeat_msg();
}
if (options.handle_trickle_downs) {
handle_trickle_down_msg();
}
if (!in_critical_section && options.handle_process_control) {
handle_process_control_msg();
}
}
// see if the core client has died, which means we need to die too
// (unless we're in a critical section)
//
if (!in_critical_section && options.check_heartbeat && heartbeat_active) {
if (heartbeat_giveup_time < interrupt_count) {
fprintf(stderr,
"No heartbeat from core client for %d sec - exiting\n",
interrupt_count - (heartbeat_giveup_time - HEARTBEAT_GIVEUP_PERIOD)
);
if (options.direct_process_action) {
boinc_exit(0);
} else {
boinc_status.no_heartbeat = true;
}
}
}
if (options.send_status_msgs) {
time_until_fraction_done_update -= TIMER_PERIOD;
if (time_until_fraction_done_update <= 0) {
double cur_cpu;
boinc_worker_thread_cpu_time(cur_cpu);
last_wu_cpu_time = cur_cpu + initial_wu_cpu_time;
update_app_progress(last_wu_cpu_time, last_checkpoint_cpu_time);
time_until_fraction_done_update = (int)aid.fraction_done_update_period;
}
}
if (options.handle_trickle_ups) {
send_trickle_up_msg();
}
}
#ifdef _WIN32
static HANDLE timer_quit_event;
UINT WINAPI timer_thread(void *) {
DWORD dwEvent = NULL;
BOOL bContinue = TRUE;
diagnostics_set_thread_name("Timer");
// Create the event that can be used to shutdown the timer thread.
//
timer_quit_event = CreateEvent(NULL, FALSE, FALSE, NULL);
if (!timer_quit_event) {
fprintf(stderr, "timer_thread(): CreateEvent() failed, GLE %d.\n", GetLastError());
}
while (bContinue) {
dwEvent = WaitForSingleObject(
timer_quit_event,
TIMER_PERIOD*1000
);
switch(dwEvent) {
case WAIT_OBJECT_0:
// timer_quit_event was signaled.
bContinue = FALSE;
break;
case WAIT_TIMEOUT:
// process any shared memory messages.
worker_timer(0);
// poor man's CPU time accounting for Win9x
//
if (!boinc_status.suspended) {
nrunning_ticks++;
}
break;
}
}
return 0;
}
#else
void* timer_thread(void*) {
block_sigalrm();
while(1) {
boinc_sleep(TIMER_PERIOD);
worker_timer(0);
}
return 0;
}
void worker_signal_handler(int) {
if (!pthread_mutex_trylock(&getrusage_mutex)) {
getrusage(RUSAGE_SELF, &worker_thread_ru);
pthread_mutex_unlock(&getrusage_mutex);
}
if (options.direct_process_action) {
while (boinc_status.suspended) {
sleep(1); // don't use boinc_sleep() because it does FP math
}
}
}
#endif
// Called from the worker thread;
// create a thread to do timer-related things.
//
int set_worker_timer() {
int retval=0;
#ifdef _WIN32
// as long as we're here, get the worker thread handle
//
DuplicateHandle(
GetCurrentProcess(),
GetCurrentThread(),
GetCurrentProcess(),
&worker_thread_handle,
0,
FALSE,
DUPLICATE_SAME_ACCESS
);
// Initialize the worker thread info for diagnostic purposes.
//
diagnostics_set_thread_name("Worker");
diagnostics_set_thread_worker();
// Create the timer thread to deal with shared memory control messages.
//
uintptr_t thread;
UINT uiThreadId;
thread = _beginthreadex(
NULL,
0,
timer_thread,
0,
0,
&uiThreadId
);
if (!thread) {
fprintf(stderr, "set_worker_timer(): _beginthreadex() failed, errno %d\n", errno);
retval = errno;
return retval;
}
// lower our priority here
//
SetThreadPriority(worker_thread_handle, THREAD_PRIORITY_IDLE);
#else
retval = pthread_create(&timer_thread_handle, NULL, timer_thread, NULL);
if (retval) {
fprintf(stderr, "set_worker_timer(): pthread_create(): %d", retval);
return retval;
}
struct sigaction sa;
itimerval value;
sa.sa_handler = worker_signal_handler;
sa.sa_flags = SA_RESTART;
sigemptyset(&sa.sa_mask);
retval = sigaction(SIGALRM, &sa, NULL);
if (retval) {
perror("boinc set_worker_timer() sigaction");
return retval;
}
value.it_value.tv_sec = TIMER_PERIOD;
value.it_value.tv_usec = 0;
value.it_interval = value.it_value;
retval = setitimer(ITIMER_REAL, &value, NULL);
if (retval) {
perror("boinc set_worker_timer() setitimer");
}
#endif
return retval;
}
int boinc_send_trickle_up(char* variety, char* p) {
if (!options.handle_trickle_ups) return ERR_NO_OPTION;
FILE* f = boinc_fopen(TRICKLE_UP_FILENAME, "wb");
if (!f) return ERR_FOPEN;
fprintf(f, "<variety>%s</variety>\n", variety);
size_t n = fwrite(p, strlen(p), 1, f);
fclose(f);
if (n != 1) return ERR_WRITE;
have_new_trickle_up = true;
return 0;
}
// logically this should be a bool.
// But it needs to be an int to be compatible with C
//
int boinc_time_to_checkpoint() {
if (ready_to_checkpoint) {
in_critical_section = true;
return 1;
}
return 0;
}
int boinc_checkpoint_completed() {
double cur_cpu;
boinc_worker_thread_cpu_time(cur_cpu);
last_wu_cpu_time = cur_cpu + aid.wu_cpu_time;
last_checkpoint_cpu_time = last_wu_cpu_time;
update_app_progress(last_checkpoint_cpu_time, last_checkpoint_cpu_time);
time_until_checkpoint = (int)aid.checkpoint_period;
in_critical_section = false;
ready_to_checkpoint = false;
return 0;
}
void boinc_begin_critical_section() {
in_critical_section = true;
}
void boinc_end_critical_section() {
in_critical_section = false;
}
int boinc_fraction_done(double x) {
fraction_done = x;
return 0;
}
// for use by graphics code.
// Caller should check for values outside [0..1];
// that means undefined (no information available).
//
double boinc_get_fraction_done() {
return fraction_done;
}
int boinc_receive_trickle_down(char* buf, int len) {
std::string filename;
char path[256];
if (!options.handle_trickle_downs) return false;
if (have_trickle_down) {
relative_to_absolute("", path);
DirScanner dirscan(path);
while (dirscan.scan(filename)) {
fprintf(stderr, "scan: %s\n", filename.c_str());
if (strstr(filename.c_str(), "trickle_down")) {
strncpy(buf, filename.c_str(), len);
return true;
}
}
have_trickle_down = false;
}
return false;
}
int boinc_upload_file(std::string& name) {
char buf[256];
std::string pname;
int retval;
retval = boinc_resolve_filename_s(name.c_str(), pname);
if (retval) return retval;
sprintf(buf, "%s%s", UPLOAD_FILE_REQ_PREFIX, name.c_str());
FILE* f = boinc_fopen(buf, "w");
if (!f) return ERR_FOPEN;
have_new_upload_file = true;
fclose(f);
return 0;
}
int boinc_upload_status(std::string& name) {
for (unsigned int i=0; i<upload_file_status.size(); i++) {
UPLOAD_FILE_STATUS& ufs = upload_file_status[i];
if (ufs.name == name) {
return ufs.status;
}
}
return ERR_NOT_FOUND;
}
void boinc_ops_per_cpu_sec(double fp, double i) {
fpops_per_cpu_sec = fp;
intops_per_cpu_sec = i;
}
void boinc_ops_cumulative(double fp, double i) {
fpops_cumulative = fp;
intops_cumulative = i;
}
void boinc_need_network() {
want_network = 1;
have_network = 0;
}
int boinc_network_poll() {
return have_network?0:1;
}
void boinc_network_done() {
want_network = 0;
}
#ifndef _WIN32
// block SIGALRM, so that the worker thread will be forced to handle it
//
void block_sigalrm() {
sigset_t mask;
sigemptyset(&mask);
sigaddset(&mask, SIGALRM);
pthread_sigmask(SIG_BLOCK, &mask, NULL);
}
#endif
const char *BOINC_RCSID_0fa0410386 = "$Id$";