boinc/client/cs_scheduler.C

537 lines
16 KiB
C++
Raw Normal View History

// The contents of this file are subject to the Mozilla Public License
// Version 1.0 (the "License"); you may not use this file except in
// compliance with the License. You may obtain a copy of the License at
// http://www.mozilla.org/MPL/
//
// Software distributed under the License is distributed on an "AS IS"
// basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
// License for the specific language governing rights and limitations
// under the License.
//
// The Original Code is the Berkeley Open Infrastructure for Network Computing.
//
// The Initial Developer of the Original Code is the SETI@home project.
// Portions created by the SETI@home project are Copyright (C) 2002
// University of California at Berkeley. All Rights Reserved.
//
// Contributor(s):
//
// High-level logic for communicating with scheduling servers,
// and for merging the result of a scheduler RPC into the client state
// Note: code for actually doing a scheduler RPC is in scheduler_op.C
#include <stdio.h>
#include <math.h>
#include <time.h>
#include "windows_cpp.h"
#include "crypt.h"
#include "error_numbers.h"
#include "file_names.h"
#include "filesys.h"
#include "parse.h"
#include "util.h"
#include "log_flags.h"
#include "account.h"
#include "message.h"
#include "scheduler_op.h"
#include "client_state.h"
// quantities like avg CPU time decay by a factor of e every week
//
#define EXP_DECAY_RATE (1./(SECONDS_PER_DAY*7))
// estimate the days of work remaining
//
double CLIENT_STATE::current_work_buf_days() {
unsigned int i;
RESULT* rp;
double seconds_remaining=0;
for (i=0; i<results.size(); i++) {
rp = results[i];
// Don't count result if we've already computed it
if (rp->state >= RESULT_COMPUTE_DONE) continue;
// TODO: subtract time already finished for WUs in progress
seconds_remaining += estimate_cpu_time(*rp->wup);
}
return (seconds_remaining / SECONDS_PER_DAY);
}
// seconds of work needed to come up to the max buffer level
//
double CLIENT_STATE::work_needed_secs() {
double x = current_work_buf_days();
if (x > global_prefs.work_buf_max_days) return 0;
return (global_prefs.work_buf_max_days - x)*SECONDS_PER_DAY;
}
// update exponentially-averaged CPU times of all projects
//
void CLIENT_STATE::update_avg_cpu(PROJECT* p) {
time_t now = time(0);
double deltat = now - p->exp_avg_mod_time;
if (deltat > 0) {
if (p->exp_avg_cpu != 0) {
p->exp_avg_cpu *= exp(deltat*EXP_DECAY_RATE);
}
p->exp_avg_mod_time = now;
}
}
// find a project that needs its master file parsed
//
PROJECT* CLIENT_STATE::next_project_master_pending() {
unsigned int i;
PROJECT* p;
time_t now = time(0);
for (i=0; i<projects.size(); i++) {
p = projects[i];
if (p->min_rpc_time > now ) continue;
if (p->master_url_fetch_pending) {
return p;
}
}
return 0;
}
// find a project that needs to contact its scheduling server
//
PROJECT* CLIENT_STATE::next_project_sched_rpc_pending() {
unsigned int i;
time_t now = time(0);
for (i=0; i<projects.size(); i++) {
if (projects[i]->min_rpc_time > now) continue;
if (projects[i]->sched_rpc_pending) {
return projects[i];
}
}
return 0;
}
// return the next project after "old", in debt order,
// that is eligible for a scheduler RPC
// It excludes projects that have (p->master_url_fetch_pending) set to true.
// Such projects will be returned by next_project_master_pending routine.
//
PROJECT* CLIENT_STATE::next_project(PROJECT* old) {
PROJECT* p, *pbest;
int best = 999;
time_t now = time(0);
unsigned int i;
pbest = 0;
for (i=0; i<projects.size(); i++) {
p = projects[i];
if (p->master_url_fetch_pending) continue;
if (p->min_rpc_time > now ) continue;
if (old && p->debt_order <= old->debt_order) continue;
if (p->debt_order < best) {
pbest = p;
best = p->debt_order;
}
}
return pbest;
}
// Compute the "resource debt" of each project.
// This is used to determine what project we will focus on next,
// based on the user-specified resource share.
// TODO: this counts only CPU time. Should reflect disk/network usage too.
//
void CLIENT_STATE::compute_resource_debts() {
unsigned int i, j;
PROJECT* p, *pbest=0;
double best;
for (i=0; i<projects.size(); i++) {
p = projects[i];
update_avg_cpu(p);
if (p->exp_avg_cpu == 0) {
p->resource_debt = p->resource_share;
} else {
p->resource_debt = p->resource_share/p->exp_avg_cpu;
}
p->debt_order = -1;
}
// put in decreasing order. Should use qsort or some stdlib thang
//
for (i=0; i<projects.size(); i++) {
best = -2;
for (j=0; j<projects.size(); j++) {
p = projects[j];
if (p->debt_order >= 0) continue;
if (p->resource_debt > best) {
best = p->resource_debt;
pbest = p;
}
}
pbest->debt_order = i;
}
}
// Prepare the scheduler request. This writes the request in XML to a
// file (SCHED_OP_REQUEST_FILE) which is later sent to the scheduling
// server
//
int CLIENT_STATE::make_scheduler_request(PROJECT* p, double work_req) {
FILE* f = fopen(SCHED_OP_REQUEST_FILE, "wb");
unsigned int i;
RESULT* rp;
int retval;
if (!f) return ERR_FOPEN;
fprintf(f,
"<scheduler_request>\n"
" <authenticator>%s</authenticator>\n"
" <hostid>%d</hostid>\n"
" <rpc_seqno>%d</rpc_seqno>\n"
" <platform_name>%s</platform_name>\n"
" <core_client_major_version>%d</core_client_major_version>\n"
" <core_client_minor_version>%d</core_client_minor_version>\n"
" <work_req_seconds>%f</work_req_seconds>\n",
p->authenticator,
p->hostid,
p->rpc_seqno,
platform_name,
core_client_major_version,
core_client_minor_version,
work_req
);
if (strlen(p->code_sign_key)) {
fprintf(f, "<code_sign_key>\n%s</code_sign_key>\n", p->code_sign_key);
}
// insert global preferences if present
//
FILE* fprefs = fopen(GLOBAL_PREFS_FILE_NAME, "r");
if (fprefs) {
copy_stream(fprefs, f);
fclose(fprefs);
}
fprintf(f, "<projects>\n");
for (i=0; i<projects.size(); i++ ) {
PROJECT* project = projects[i];
fprintf(f,
" <project>\n"
" <master_url>%s</master_url>\n"
" <resource_share>%f</resource_share>\n"
" </project>\n",
project->master_url,
project->resource_share
);
}
fprintf(f, "</projects>\n");
retval = time_stats.write(f, true);
if (retval) return retval;
retval = net_stats.write(f, true);
if (retval) return retval;
retval = host_info.write(f);
if (retval) return retval;
for (i=0; i<results.size(); i++) {
rp = results[i];
if (rp->project == p && rp->ready_to_ack) {
rp->write(f, true);
}
}
fprintf(f, "</scheduler_request>\n");
fclose(f);
return 0;
}
// find a project with results that are overdue to report,
// and which we're allowed to contact.
//
PROJECT* CLIENT_STATE::find_project_with_overdue_results() {
unsigned int i;
RESULT* r;
time_t now = time(0);
for (i=0; i<results.size(); i++) {
r = results[i];
// If we've completed computation but haven't finished reporting the
// results to the server, return the project for this result
if (r->ready_to_ack && (r->project->min_rpc_time < now)) {
return r->project;
}
}
return 0;
}
// return true if we're allowed to do a scheduler RPC to at least one project
//
bool CLIENT_STATE::some_project_rpc_ok() {
unsigned int i;
time_t now = time(0);
for (i=0; i<projects.size(); i++) {
if (projects[i]->min_rpc_time < now) return true;
}
return false;
}
// called from the client's polling loop.
// initiate scheduler RPC activity if needed and possible
//
bool CLIENT_STATE::scheduler_rpc_poll() {
double work_secs;
PROJECT* p;
bool action=false, below_work_buf_min, should_get_work;
switch(scheduler_op->state) {
case SCHEDULER_OP_STATE_IDLE:
if (exit_when_idle && contacted_sched_server) {
should_get_work = false;
} else {
below_work_buf_min = (current_work_buf_days() <= global_prefs.work_buf_min_days);
should_get_work = below_work_buf_min && some_project_rpc_ok();
}
if (should_get_work) {
compute_resource_debts();
scheduler_op->init_get_work();
action = true;
} else if ((p=next_project_master_pending())) {
scheduler_op->init_get_work();
action = true;
} else if ((p=next_project_sched_rpc_pending())) {
scheduler_op->init_return_results(p, 0);
action = true;
} else {
p = find_project_with_overdue_results();
if (p) {
compute_resource_debts();
if (p->debt_order == 0) {
work_secs = work_needed_secs();
} else {
work_secs = 0;
}
scheduler_op->init_return_results(p, work_secs);
action = true;
}
}
break;
default:
scheduler_op->poll();
if (scheduler_op->state == SCHEDULER_OP_STATE_IDLE) {
action = true;
}
break;
}
return action;
}
// Handle the reply from a scheduler
//
int CLIENT_STATE::handle_scheduler_reply(
PROJECT* project, char* scheduler_url, int& nresults
) {
SCHEDULER_REPLY sr;
FILE* f;
int retval;
unsigned int i;
bool signature_valid;
char buf[256];
nresults = 0;
contacted_sched_server = true;
if (log_flags.sched_op_debug) {
f = fopen(SCHED_OP_RESULT_FILE, "r");
printf("------------- SCHEDULER REPLY ----------\n");
copy_stream(f, stdout);
fclose(f);
printf("------------- END ----------\n");
}
f = fopen(SCHED_OP_RESULT_FILE, "r");
if (!f) return ERR_FOPEN;
retval = sr.parse(f);
fclose(f);
if (retval) return retval;
if (strlen(sr.project_name)) {
safe_strcpy(project->project_name, sr.project_name);
}
if (strlen(sr.user_name)) {
safe_strcpy(project->user_name, sr.user_name);
}
if (strlen(sr.team_name)) {
safe_strcpy(project->team_name, sr.team_name);
}
project->user_total_credit = sr.user_total_credit;
project->user_expavg_credit = sr.user_expavg_credit;
project->user_create_time = sr.user_create_time;
if (strlen(sr.message)) {
int prio = (!strcmp(sr.message_priority, "high"))?MSG_ERROR:MSG_INFO;
show_message(project, sr.message, prio);
}
if (sr.request_delay) {
project->min_rpc_time = time(0) + sr.request_delay;
}
project->host_total_credit = sr.host_total_credit;
project->host_expavg_credit = sr.host_expavg_credit;
if (sr.hostid) {
project->hostid = sr.hostid;
project->host_create_time = sr.host_create_time;
project->rpc_seqno = 0;
}
// if the scheduler reply includes global preferences,
// insert extra elements, write to disk, and parse
//
if (sr.global_prefs_xml) {
f = fopen(GLOBAL_PREFS_FILE_NAME, "w");
if (!f) return ERR_FOPEN;
fprintf(f,
"<global_preferences>\n"
" <source_project>%s</source_project>\n"
" <source_scheduler>%s</source_scheduler>\n"
"%s"
"</global_preferences>\n",
project->master_url,
scheduler_url,
sr.global_prefs_xml
);
fclose(f);
safe_strcpy(host_venue, sr.host_venue);
retval = global_prefs.parse_file(host_venue);
if (retval) return retval;
install_global_prefs();
}
// deal with project preferences (should always be there)
//
if (sr.project_prefs_xml) {
if (strcmp(
project->project_specific_prefs, sr.project_prefs_xml
)) {
strcpy(project->project_specific_prefs, sr.project_prefs_xml);
retval = project->write_account_file();
if (retval) return retval;
}
}
// if the scheduler reply includes a code-signing key,
// accept it if we don't already have one from the project.
// Otherwise verify its signature, using the key we already have.
//
if (sr.code_sign_key) {
if (!strlen(project->code_sign_key)) {
safe_strcpy(project->code_sign_key, sr.code_sign_key);
} else {
if (sr.code_sign_key_signature) {
retval = verify_string2(
sr.code_sign_key, sr.code_sign_key_signature,
project->code_sign_key, signature_valid
);
if (!retval && signature_valid) {
safe_strcpy(project->code_sign_key, sr.code_sign_key);
} else {
fprintf(stdout,
"New code signing key from %s doesn't validate\n",
project->project_name
);
}
} else {
fprintf(stdout, "Missing code sign key signature\n");
}
}
}
// copy new entities to client state
//
for (i=0; i<sr.apps.size(); i++) {
APP* app = lookup_app(project, sr.apps[i].name);
if (!app) {
app = new APP;
*app = sr.apps[i];
retval = link_app(project, app);
if (!retval) apps.push_back(app);
}
}
for (i=0; i<sr.file_infos.size(); i++) {
if (!lookup_file_info(project, sr.file_infos[i].name)) {
FILE_INFO* fip = new FILE_INFO;
*fip = sr.file_infos[i];
retval = link_file_info(project, fip);
if (!retval) file_infos.push_back(fip);
}
}
for (i=0; i<sr.app_versions.size(); i++) {
APP* app = lookup_app(project, sr.app_versions[i].app_name);
APP_VERSION* avp = lookup_app_version(app, sr.app_versions[i].version_num);
if (!avp) {
avp = new APP_VERSION;
*avp = sr.app_versions[i];
retval = link_app_version(project, avp);
if (!retval) app_versions.push_back(avp);
} else {
// The list of file references may have changed.
// Copy the list from the reply message,
// and link to the FILE_INFOs
//
avp->app_files = sr.app_versions[i].app_files;
link_app_version(project, avp);
}
}
for (i=0; i<sr.workunits.size(); i++) {
if (!lookup_workunit(project, sr.workunits[i].name)) {
WORKUNIT* wup = new WORKUNIT;
*wup = sr.workunits[i];
wup->version_num = latest_version_num(wup->app_name);
retval = link_workunit(project, wup);
if (!retval) {
workunits.push_back(wup);
}
}
}
for (i=0; i<sr.results.size(); i++) {
if (!lookup_result(project, sr.results[i].name)) {
RESULT* rp = new RESULT;
*rp = sr.results[i];
retval = link_result(project, rp);
if (!retval) results.push_back(rp);
rp->state = RESULT_NEW;
nresults++;
} else {
sprintf(buf, "Already have result %s\n", sr.results[i].name);
show_message(project, buf, MSG_ERROR);
}
}
// update records for ack'ed results
//
for (i=0; i<sr.result_acks.size(); i++) {
RESULT* rp = lookup_result(project, sr.result_acks[i].name);
if (log_flags.sched_op_debug) {
printf("got ack for result %s\n", sr.result_acks[i].name);
}
if (rp) {
rp->server_ack = true;
} else {
sprintf(buf, "Got ack for result %s, can't find\n",
sr.result_acks[i].name
);
show_message(project, buf, MSG_ERROR);
}
}
project->sched_rpc_pending = false;
set_client_state_dirty("handle_scheduler_reply");
if (log_flags.state_debug) {
printf("State after handle_scheduler_reply():\n");
print_summary();
}
return 0;
}