boinc/client/coproc_detect.cpp

1471 lines
52 KiB
C++
Raw Normal View History

// This file is part of BOINC.
// http://boinc.berkeley.edu
// Copyright (C) 2009 University of California
//
// BOINC is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License
// as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// BOINC is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with BOINC. If not, see <http://www.gnu.org/licenses/>.
// client-specific GPU code. Mostly GPU detection
#include "cpp.h"
#ifdef _WIN32
#include "boinc_win.h"
#ifndef SIM
#include <nvapi.h>
#endif
#else
#ifdef __APPLE__
// Suppress obsolete warning when building for OS 10.3.9
#define DLOPEN_NO_WARN
#endif
#include "config.h"
#include <dlfcn.h>
#include <setjmp.h>
#include <signal.h>
#endif
#include "coproc.h"
#include "str_util.h"
#include "util.h"
#include "client_state.h"
#include "client_msgs.h"
using std::string;
using std::vector;
//#define MEASURE_AVAILABLE_RAM
static bool in_vector(int n, vector<int>& v) {
for (unsigned int i=0; i<v.size(); i++) {
if (v[i] == n) return true;
}
return false;
}
#ifndef _WIN32
jmp_buf resume;
void segv_handler(int) {
longjmp(resume, 1);
}
#endif
#ifdef _WIN32
HMODULE opencl_lib = NULL;
// TODO: Are these correct?
typedef cl_int (__stdcall *CL_PLATFORMIDS) (cl_uint, cl_platform_id*, cl_uint*);
typedef cl_int (__stdcall *CL_PLATFORMINFO) (cl_platform_id, cl_platform_info, size_t, void*, size_t*);
typedef cl_int (__stdcall *CL_DEVICEIDS) (cl_platform_id, cl_device_type, cl_uint, cl_device_id*, cl_uint*);
typedef int (__stdcall *CL_INFO) (cl_device_id, cl_device_info, size_t, void*, size_t*);
CL_PLATFORMIDS __clGetPlatformIDs = NULL;
CL_PLATFORMINFO __clGetPlatformInfo = NULL;
CL_DEVICEIDS __clGetDeviceIDs = NULL;
CL_INFO __clGetDeviceInfo = NULL;
#else
void* opencl_lib = NULL;
cl_int (*__clGetPlatformIDs)(cl_uint /* num_entries */,
cl_platform_id * /* platforms */,
cl_uint * /* num_platforms */);
cl_int (*__clGetPlatformInfo)(cl_platform_id /* platform */,
cl_platform_info /* param_name */,
size_t /* param_value_size */,
void * /* param_value */,
size_t * /* param_value_size_ret */);
cl_int (*__clGetDeviceIDs)(cl_platform_id /* platform */,
cl_device_type /* device_type */,
cl_uint /* num_entries */,
cl_device_id * /* devices */,
cl_uint * /* num_devices */);
cl_int (*__clGetDeviceInfo)(cl_device_id /* device */,
cl_device_info /* param_name */,
size_t /* param_value_size */,
void * /* param_value */,
size_t * /* param_value_size_ret */);
#endif
void COPROC::print_available_ram() {
#ifdef MEASURE_AVAILABLE_RAM
if (gstate.now - last_print_time < 60) return;
last_print_time = gstate.now;
for (int i=0; i<count; i++) {
if (available_ram_unknown[i]) {
if (log_flags.coproc_debug) {
msg_printf(0, MSG_INFO,
"[coproc] %s device %d: available RAM unknown",
type, device_nums[i]
);
}
} else {
if (log_flags.coproc_debug) {
msg_printf(0, MSG_INFO,
"[coproc] %s device %d: available RAM %d MB",
type, device_nums[i],
(int)(available_ram[i]/MEGA)
);
}
}
}
#endif
}
//TODO: Determine how we want to compare OpenCL devices - this is only a placeholder
// return 1/-1/0 if device 1 is more/less/same capable than device 2.
// factors (decreasing priority):
// - global memory
// - local memory
// - number of cores
// - speed
//
// If "loose", tolerate small memory diff
//
int opencl_compare(OPENCL_DEVICE_PROP& c1, OPENCL_DEVICE_PROP& c2, bool loose) {
if (loose) {
if (c1.global_RAM > 1.4*c2.global_RAM) return 1;
if (c1.global_RAM < .7* c2.global_RAM) return -1;
return 0;
}
if (c1.global_RAM > c2.global_RAM) return 1;
if (c1.global_RAM < c2.global_RAM) return -1;
if (loose) {
if (c1.local_RAM > 1.4*c2.local_RAM) return 1;
if (c1.local_RAM < .7* c2.local_RAM) return -1;
return 0;
}
if (c1.local_RAM > c2.local_RAM) return 1;
if (c1.local_RAM < c2.local_RAM) return -1;
if (c1.max_cores > c2.max_cores) return 1;
if (c1.max_cores < c2.max_cores) return -1;
if (c1.max_clock_freq > c2.max_clock_freq) return 1;
if (c1.max_clock_freq < c2.max_clock_freq) return -1;
return 0;
}
void COPROCS::get_opencl(bool use_all, vector<string>&warnings) {
cl_int ciErrNum;
cl_platform_id platforms[1];
cl_uint num_platforms, num_devices, device_index;
cl_device_id devices[MAX_COPROC_INSTANCES];
OPENCL_DEVICE_PROP prop;
unsigned int i;
#ifdef _WIN32
opencl_lib = LoadLibrary("OpenCL.dll");
if (!opencl_lib) {
warnings.push_back("No OpenCL library found");
return;
}
__clGetPlatformIDs = (CL_PLATFORMIDS)GetProcAddress( opencl_lib, "clGetPlatformIDs" );
__clGetPlatformInfo = (CL_PLATFORMINFO)( opencl_lib, "clGetPlatformInfo" );
__clGetDeviceIDs = (CL_DEVICEIDS)GetProcAddress( opencl_lib, "clGetDeviceIDs" );
__clGetDeviceInfo = (CL_INFO)GetProcAddress( opencl_lib, "clGetDeviceInfo" );
#else
#ifdef __APPLE__
opencl_lib = dlopen("/System/Library/Frameworks/OpenCL.framework/Versions/Current/OpenCL", RTLD_NOW);
#else
// TODO: Is this correct?
opencl_lib = dlopen("libOpenCL.so", RTLD_NOW);
#endif
if (!opencl_lib) {
warnings.push_back("No OpenCL library found");
return;
}
__clGetPlatformIDs = (cl_int(*)(cl_uint, cl_platform_id*, cl_uint*)) dlsym( opencl_lib, "clGetPlatformIDs" );
__clGetPlatformInfo = (cl_int(*)(cl_platform_id, cl_platform_info, size_t, void*, size_t*)) dlsym( opencl_lib, "clGetPlatformInfo" );
__clGetDeviceIDs = (cl_int(*)(cl_platform_id, cl_device_type, cl_uint, cl_device_id*, cl_uint*)) dlsym( opencl_lib, "clGetDeviceIDs" );
__clGetDeviceInfo = (cl_int(*)(cl_device_id, cl_device_info, size_t, void*, size_t*)) dlsym( opencl_lib, "clGetDeviceInfo" );
#endif
if (!__clGetPlatformIDs) {
warnings.push_back("clGetPlatformIDs() missing from OpenCL library");
return;
}
if (!__clGetDeviceIDs) {
warnings.push_back("clGetDeviceIDs() missing from OpenCL library");
return;
}
if (!__clGetDeviceInfo) {
warnings.push_back("clGetDeviceInfo() missing from OpenCL library");
return;
}
// Ignore all but the first OpenCL platform
ciErrNum = (*__clGetPlatformIDs)(1, platforms, &num_platforms);
if ((ciErrNum != CL_SUCCESS) || (num_platforms == 0)) {
warnings.push_back("clGetPlatformIDs() failed to return any OpenCL platforms");
return;
}
ciErrNum = (*__clGetDeviceIDs)(platforms[0], CL_DEVICE_TYPE_GPU, MAX_COPROC_INSTANCES, devices, &num_devices);
if ((ciErrNum != CL_SUCCESS) || (num_devices == 0)) {
warnings.push_back("OpenCL library present but no GPUs found");
return;
}
vector<OPENCL_DEVICE_PROP> nvidia_opencls;
vector<OPENCL_DEVICE_PROP> ati_opencls;
for (device_index=0; device_index<num_devices; ++device_index) {
memset(&prop, 0, sizeof(prop));
prop.device_id = devices[device_index];
ciErrNum = (*__clGetPlatformInfo) (platforms[0], CL_PLATFORM_VERSION, sizeof(prop.openCL_platform_version),
prop.openCL_platform_version, NULL);
if (ciErrNum != CL_SUCCESS) {
warnings.push_back("clGetPlatformInfo() failed to get platform version");
return;
}
ciErrNum = get_opencl_info(prop, device_index, warnings);
if (ciErrNum != CL_SUCCESS) return;
if (!strcmp(prop.vendor, "NVIDIA")) {
nvidia_opencls.push_back(prop);
}
if ((!strcmp(prop.vendor, "ATI")) || (!strcmp(prop.vendor, "AMD"))) {
ati_opencls.push_back(prop);
}
}
if ((nvidia_opencls.size() == 0) && (ati_opencls.size() == 0)){
warnings.push_back("No OpenCL-capable GPUs found");
return;
}
if (nvidia.have_cuda) { // If CUDA already found the "best" NVIDIA GPU
for (i=0; i<nvidia_opencls.size(); i++) {
if (nvidia.matches(nvidia_opencls[i])) {
// TODO: how do we exclude those listed by config.ignore_cuda_dev ??
nvidia.opencl_prop = nvidia_opencls[i];
nvidia.opencl_device_ids[nvidia.opencl_device_count++] = nvidia_opencls[i].device_id;
nvidia.have_opencl = true;
}
}
} else {
// identify the most capable NVIDIA OpenCL GPU
//
bool first = true;
for (i=0; i<nvidia_opencls.size(); i++) {
// if (in_vector(nvidia_opencls[i].device_num, ignore_devs)) continue;
bool is_best = false;
if (first) {
is_best = true;
first = false;
} else if (opencl_compare(nvidia_opencls[i], nvidia.opencl_prop, false) > 0) {
is_best = true;
}
if (is_best) {
nvidia.opencl_prop = nvidia_opencls[i]; // fill in what info we have
strcpy(nvidia.prop.name, nvidia_opencls[i].name);
nvidia.prop.totalGlobalMem = nvidia_opencls[i].global_RAM;
nvidia.prop.clockRate = nvidia_opencls[i].max_clock_freq * 1000;
nvidia.have_opencl = true;
}
}
// see which other instances are equivalent,
// and set the "opencl_device_count" and "opencl_device_ids" fields
//
nvidia.opencl_device_count = 0;
for (i=0; i<nvidia_opencls.size(); i++) {
#if 0
// TODO: should we implement config.ignore_opencl_dev?
char buf2[256];
//TODO: What should description() be for OpenCL?
nvidia_opencls[i].description(buf);
if (in_vector(nvidia_opencls[i].device_num, ignore_devs)) {
sprintf(buf2, "NVIDIA GPU %d (ignored by config): %s", nvidia_opencls[i].device_num, buf);
} else
#endif
if (use_all || !opencl_compare(nvidia_opencls[i], nvidia.opencl_prop, true)) {
nvidia.opencl_device_ids[nvidia.opencl_device_count++] = nvidia_opencls[i].device_id;
// sprintf(buf2, "NVIDIA GPU %d: %s", nvidia_opencls[i].device_num, buf);
// } else {
// sprintf(buf2, "NVIDIA GPU %d (not used): %s", nvidia_opencls[i].device_num, buf);
}
// descs.push_back(string(buf2));
}
} // End if (! nvidia.have_cuda)
if (ati.have_cuda) { // If CAL already found the "best" CAL GPU
for (i=0; i<ati_opencls.size(); i++) {
if (ati.matches(ati_opencls[i])) {
// TODO: how do we exclude those listed by config.ignore_ati_dev ??
ati.opencl_prop = ati_opencls[i];
ati.opencl_device_ids[ati.opencl_device_count++] = ati_opencls[i].device_id;
ati.have_opencl = true;
}
}
} else {
// identify the most capable ATI OpenCL GPU
//
bool first = true;
for (i=0; i<ati_opencls.size(); i++) {
// if (in_vector(ati_opencls[i].device_num, ignore_devs)) continue;
bool is_best = false;
if (first) {
is_best = true;
first = false;
} else if (opencl_compare(ati_opencls[i], ati.opencl_prop, false) > 0) {
is_best = true;
}
if (is_best) {
ati.opencl_prop = ati_opencls[i]; // fill in what info we have
strcpy(ati.name, ati_opencls[i].name);
ati.attribs.localRAM = ati_opencls[i].local_RAM;
ati.attribs.engineClock = ati_opencls[i].max_clock_freq;
ati.have_opencl = true;
}
}
// see which other instances are equivalent,
// and set the "opencl_device_count" and "opencl_device_ids" fields
//
ati.opencl_device_count = 0;
for (i=0; i<ati_opencls.size(); i++) {
#if 0
// TODO: should we implement config.ignore_opencl_dev?
char buf2[256];
ati_opencls[i].description(buf);
if (in_vector(ati_opencls[i].device_num, ignore_devs)) {
sprintf(buf2, "ATI GPU %d (ignored by config): %s", ati_opencls[i].device_num, buf);
} else
#endif
if (use_all || !opencl_compare(ati_opencls[i], ati.opencl_prop, true)) {
ati.opencl_device_ids[ati.opencl_device_count++] = ati_opencls[i].device_id;
// sprintf(buf2, "ATI GPU %d: %s", ati_opencls[i].device_num, buf);
// } else {
// sprintf(buf2, "ATI GPU %d (not used): %s", ati_opencls[i].device_num, buf);
}
// descs.push_back(string(buf2));
}
} // End if (! ati.have_cuda)
//TODO: Add code to add for other GPU vendors
}
cl_int COPROCS::get_opencl_info(
OPENCL_DEVICE_PROP& prop,
cl_uint device_index,
vector<string>&warnings
) {
cl_int ciErrNum;
char buf[256];
ciErrNum = (*__clGetDeviceInfo)(prop.device_id, CL_DEVICE_NAME, sizeof(prop.name), prop.name, NULL);
if ((ciErrNum != CL_SUCCESS) || (prop.name[0] == 0)) {
sprintf(buf, "clGetDeviceInfo failed to get name for GPU %d", (int)device_index);
warnings.push_back(buf);
return ciErrNum;
}
ciErrNum = (*__clGetDeviceInfo)(prop.device_id, CL_DEVICE_VENDOR, sizeof(prop.vendor), prop.vendor, NULL);
if ((ciErrNum != CL_SUCCESS) || (prop.vendor[0] == 0)) {
sprintf(buf, "clGetDeviceInfo failed to get vendor for GPU %d", (int)device_index);
warnings.push_back(buf);
return ciErrNum;
}
ciErrNum = (*__clGetDeviceInfo)(prop.device_id, CL_DEVICE_VENDOR_ID, sizeof(prop.vendor_id), &prop.vendor_id, NULL);
if (ciErrNum != CL_SUCCESS) {
sprintf(buf, "clGetDeviceInfo failed to get vendor ID for GPU %d", (int)device_index);
warnings.push_back(buf);
return ciErrNum;
}
ciErrNum = (*__clGetDeviceInfo)(prop.device_id, CL_DEVICE_AVAILABLE, sizeof(prop.available), &prop.available, NULL);
if (ciErrNum != CL_SUCCESS) {
sprintf(buf, "clGetDeviceInfo failed to get availability for GPU %d", (int)device_index);
warnings.push_back(buf);
return ciErrNum;
}
ciErrNum = (*__clGetDeviceInfo)(prop.device_id, CL_DEVICE_HALF_FP_CONFIG, sizeof(prop.hp_fp_config), &prop.hp_fp_config, NULL);
if (ciErrNum != CL_SUCCESS) {
if ((ciErrNum == CL_INVALID_VALUE) || (ciErrNum == CL_INVALID_OPERATION)) {
prop.hp_fp_config = 0; // Not supported by OpenCL 1.0
} else {
sprintf(buf, "clGetDeviceInfo failed to get half-precision floating point capabilities for GPU %d", (int)device_index);
warnings.push_back(buf);
return ciErrNum;
}
}
ciErrNum = (*__clGetDeviceInfo)(prop.device_id, CL_DEVICE_SINGLE_FP_CONFIG, sizeof(prop.sp_fp_config), &prop.sp_fp_config, NULL);
if (ciErrNum != CL_SUCCESS) {
sprintf(buf, "clGetDeviceInfo failed to get single-precision floating point capabilities for GPU %d", (int)device_index);
warnings.push_back(buf);
return ciErrNum;
}
ciErrNum = (*__clGetDeviceInfo)(prop.device_id, CL_DEVICE_DOUBLE_FP_CONFIG, sizeof(prop.dp_fp_config), &prop.dp_fp_config, NULL);
if (ciErrNum != CL_SUCCESS) {
if ((ciErrNum == CL_INVALID_VALUE) || (ciErrNum == CL_INVALID_OPERATION)) {
prop.dp_fp_config = 0; // Not supported by OpenCL 1.0
} else {
sprintf(buf, "clGetDeviceInfo failed to get double-precision floating point capabilities for GPU %d", (int)device_index);
warnings.push_back(buf);
return ciErrNum;
}
}
ciErrNum = (*__clGetDeviceInfo)(prop.device_id, CL_DEVICE_ENDIAN_LITTLE, sizeof(prop.little_endian), &prop.little_endian, NULL);
if (ciErrNum != CL_SUCCESS) {
sprintf(buf, "clGetDeviceInfo failed to get little or big endian for GPU %d", (int)device_index);
warnings.push_back(buf);
return ciErrNum;
}
ciErrNum = (*__clGetDeviceInfo)(prop.device_id, CL_DEVICE_EXECUTION_CAPABILITIES, sizeof(prop.exec_capab), &prop.exec_capab, NULL);
if (ciErrNum != CL_SUCCESS) {
sprintf(buf, "clGetDeviceInfo failed to get execution capabilities for GPU %d", (int)device_index);
warnings.push_back(buf);
return ciErrNum;
}
ciErrNum = (*__clGetDeviceInfo)(prop.device_id, CL_DEVICE_EXTENSIONS, sizeof(prop.extensions), prop.extensions, NULL);
if (ciErrNum != CL_SUCCESS) {
sprintf(buf, "clGetDeviceInfo failed to get device extensions for GPU %d", (int)device_index);
warnings.push_back(buf);
return ciErrNum;
}
ciErrNum = (*__clGetDeviceInfo)(prop.device_id, CL_DEVICE_GLOBAL_MEM_SIZE, sizeof(prop.global_RAM), &prop.global_RAM, NULL);
if (ciErrNum != CL_SUCCESS) {
sprintf(buf, "clGetDeviceInfo failed to get global RAM size for GPU %d", (int)device_index);
warnings.push_back(buf);
return ciErrNum;
}
ciErrNum = (*__clGetDeviceInfo)(prop.device_id, CL_DEVICE_LOCAL_MEM_SIZE, sizeof(prop.local_RAM), &prop.local_RAM, NULL);
if (ciErrNum != CL_SUCCESS) {
sprintf(buf, "clGetDeviceInfo failed to get local RAM size for GPU %d", (int)device_index);
warnings.push_back(buf);
return ciErrNum;
}
ciErrNum = (*__clGetDeviceInfo)(prop.device_id, CL_DEVICE_MAX_CLOCK_FREQUENCY, sizeof(prop.max_clock_freq), &prop.max_clock_freq, NULL);
if (ciErrNum != CL_SUCCESS) {
sprintf(buf, "clGetDeviceInfo failed to get max number of cores for GPU %d", (int)device_index);
warnings.push_back(buf);
return ciErrNum;
}
ciErrNum = (*__clGetDeviceInfo)(prop.device_id, CL_DEVICE_MAX_COMPUTE_UNITS, sizeof(prop.max_cores), &prop.max_cores, NULL);
if (ciErrNum != CL_SUCCESS) {
sprintf(buf, "clGetDeviceInfo failed to get local RAM size for GPU %d", (int)device_index);
warnings.push_back(buf);
return ciErrNum;
}
ciErrNum = (*__clGetDeviceInfo)(prop.device_id, CL_DEVICE_VERSION, sizeof(prop.openCL_device_version), prop.openCL_device_version, NULL);
if (ciErrNum != CL_SUCCESS) {
sprintf(buf, "clGetDeviceInfo failed to get OpenCL version supported by GPU %d", (int)device_index);
warnings.push_back(buf);
return ciErrNum;
}
ciErrNum = (*__clGetDeviceInfo)(prop.device_id, CL_DRIVER_VERSION, sizeof(prop.openCL_driver_version), prop.openCL_driver_version, NULL);
if (ciErrNum != CL_SUCCESS) {
sprintf(buf, "clGetDeviceInfo failed to get OpenCL driver version for GPU %d", (int)device_index);
warnings.push_back(buf);
return ciErrNum;
}
return CL_SUCCESS;
}
void COPROCS::get(
bool use_all, vector<string>&descs, vector<string>&warnings,
- client: generalize the GPU framework so that - new GPU types can be added easily - users can specify GPUs in cc_config.xml, referred to by app_info.xml, and they will be scheduled by BOINC and passed --device N options Note: the parsing of cc_config.xml is not done yet. - RPC protocols (account manager and scheduler) can now specify GPU types in separate elements rather than embedding them in tag names e.g. <no_rsc>NVIDIA</no_rsc> rather than <no_cuda/> - client: in account manager replies, parse elements of the form <no_rsc>NAME</no_rsc> indicating the GPUs of type NAME should not be used. This allows account managers to control GPU types not hardwired into the client. Note: <no_cuda/> and <no_ati/> will continue to be supported. - scheduler RPC reply: add <no_rsc_apps>NAME</no_rsc_apps> (NAME = GPU name) to indicate that the project has no jobs for the indicated GPU type. <no_cuda_apps> etc. are still supported - client/lib: remove set_debts() GUI RPC - client/scheduler RPC remove <cuda_backoff> etc. (superceded by no_app) Exception: <ip_result> elements in sched request still have <ncudas> and <natis>. Fix this later. Implementation notes: - client/lib: change "CUDA" to "NVIDIA" in type/variable names, and in XML Continue to recognize "CUDA" for compatibility - host_info.coprocs no longer used within the client; use a global var (COPROCS coprocs) instead. COPROCS now has an array of COPROCs; GPUs types are identified by the array index. Index zero means CPU. - a bunch of other resource-specific structs (like RSC_WORK_FETCH) are now stored in arrays, with same indices as COPROCS (i.e. index 0 is CPU) - COPROCS still has COPROC_NVIDIA and COPROC_ATI structs to hold vendor-specific info - APP_VERSION now has a struct GPU_USAGE to describe its GPU usage svn path=/trunk/boinc/; revision=23253
2011-03-25 03:44:09 +00:00
vector<int>& ignore_nvidia_dev,
vector<int>& ignore_ati_dev
) {
#ifdef _WIN32
try {
- client: generalize the GPU framework so that - new GPU types can be added easily - users can specify GPUs in cc_config.xml, referred to by app_info.xml, and they will be scheduled by BOINC and passed --device N options Note: the parsing of cc_config.xml is not done yet. - RPC protocols (account manager and scheduler) can now specify GPU types in separate elements rather than embedding them in tag names e.g. <no_rsc>NVIDIA</no_rsc> rather than <no_cuda/> - client: in account manager replies, parse elements of the form <no_rsc>NAME</no_rsc> indicating the GPUs of type NAME should not be used. This allows account managers to control GPU types not hardwired into the client. Note: <no_cuda/> and <no_ati/> will continue to be supported. - scheduler RPC reply: add <no_rsc_apps>NAME</no_rsc_apps> (NAME = GPU name) to indicate that the project has no jobs for the indicated GPU type. <no_cuda_apps> etc. are still supported - client/lib: remove set_debts() GUI RPC - client/scheduler RPC remove <cuda_backoff> etc. (superceded by no_app) Exception: <ip_result> elements in sched request still have <ncudas> and <natis>. Fix this later. Implementation notes: - client/lib: change "CUDA" to "NVIDIA" in type/variable names, and in XML Continue to recognize "CUDA" for compatibility - host_info.coprocs no longer used within the client; use a global var (COPROCS coprocs) instead. COPROCS now has an array of COPROCs; GPUs types are identified by the array index. Index zero means CPU. - a bunch of other resource-specific structs (like RSC_WORK_FETCH) are now stored in arrays, with same indices as COPROCS (i.e. index 0 is CPU) - COPROCS still has COPROC_NVIDIA and COPROC_ATI structs to hold vendor-specific info - APP_VERSION now has a struct GPU_USAGE to describe its GPU usage svn path=/trunk/boinc/; revision=23253
2011-03-25 03:44:09 +00:00
nvidia.get(use_all, descs, warnings, ignore_nvidia_dev);
}
catch (...) {
warnings.push_back("Caught SIGSEGV in NVIDIA GPU detection");
}
try {
ati.get(use_all, descs, warnings, ignore_ati_dev);
}
catch (...) {
warnings.push_back("Caught SIGSEGV in ATI GPU detection");
}
#else
void (*old_sig)(int) = signal(SIGSEGV, segv_handler);
if (setjmp(resume)) {
warnings.push_back("Caught SIGSEGV in NVIDIA GPU detection");
} else {
- client: generalize the GPU framework so that - new GPU types can be added easily - users can specify GPUs in cc_config.xml, referred to by app_info.xml, and they will be scheduled by BOINC and passed --device N options Note: the parsing of cc_config.xml is not done yet. - RPC protocols (account manager and scheduler) can now specify GPU types in separate elements rather than embedding them in tag names e.g. <no_rsc>NVIDIA</no_rsc> rather than <no_cuda/> - client: in account manager replies, parse elements of the form <no_rsc>NAME</no_rsc> indicating the GPUs of type NAME should not be used. This allows account managers to control GPU types not hardwired into the client. Note: <no_cuda/> and <no_ati/> will continue to be supported. - scheduler RPC reply: add <no_rsc_apps>NAME</no_rsc_apps> (NAME = GPU name) to indicate that the project has no jobs for the indicated GPU type. <no_cuda_apps> etc. are still supported - client/lib: remove set_debts() GUI RPC - client/scheduler RPC remove <cuda_backoff> etc. (superceded by no_app) Exception: <ip_result> elements in sched request still have <ncudas> and <natis>. Fix this later. Implementation notes: - client/lib: change "CUDA" to "NVIDIA" in type/variable names, and in XML Continue to recognize "CUDA" for compatibility - host_info.coprocs no longer used within the client; use a global var (COPROCS coprocs) instead. COPROCS now has an array of COPROCs; GPUs types are identified by the array index. Index zero means CPU. - a bunch of other resource-specific structs (like RSC_WORK_FETCH) are now stored in arrays, with same indices as COPROCS (i.e. index 0 is CPU) - COPROCS still has COPROC_NVIDIA and COPROC_ATI structs to hold vendor-specific info - APP_VERSION now has a struct GPU_USAGE to describe its GPU usage svn path=/trunk/boinc/; revision=23253
2011-03-25 03:44:09 +00:00
nvidia.get(use_all, descs, warnings, ignore_nvidia_dev);
}
#ifndef __APPLE__ // ATI does not yet support CAL on Macs
if (setjmp(resume)) {
warnings.push_back("Caught SIGSEGV in ATI GPU detection");
} else {
ati.get(use_all, descs, warnings, ignore_ati_dev);
}
#endif
get_opencl(use_all, warnings);
signal(SIGSEGV, old_sig);
#endif
}
////////////////// NVIDIA STARTS HERE /////////////////
//
// return 1/-1/0 if device 1 is more/less/same capable than device 2.
// factors (decreasing priority):
// - compute capability
// - software version
// - memory
// - speed
//
// If "loose", ignore FLOPS and tolerate small memory diff
//
- client: generalize the GPU framework so that - new GPU types can be added easily - users can specify GPUs in cc_config.xml, referred to by app_info.xml, and they will be scheduled by BOINC and passed --device N options Note: the parsing of cc_config.xml is not done yet. - RPC protocols (account manager and scheduler) can now specify GPU types in separate elements rather than embedding them in tag names e.g. <no_rsc>NVIDIA</no_rsc> rather than <no_cuda/> - client: in account manager replies, parse elements of the form <no_rsc>NAME</no_rsc> indicating the GPUs of type NAME should not be used. This allows account managers to control GPU types not hardwired into the client. Note: <no_cuda/> and <no_ati/> will continue to be supported. - scheduler RPC reply: add <no_rsc_apps>NAME</no_rsc_apps> (NAME = GPU name) to indicate that the project has no jobs for the indicated GPU type. <no_cuda_apps> etc. are still supported - client/lib: remove set_debts() GUI RPC - client/scheduler RPC remove <cuda_backoff> etc. (superceded by no_app) Exception: <ip_result> elements in sched request still have <ncudas> and <natis>. Fix this later. Implementation notes: - client/lib: change "CUDA" to "NVIDIA" in type/variable names, and in XML Continue to recognize "CUDA" for compatibility - host_info.coprocs no longer used within the client; use a global var (COPROCS coprocs) instead. COPROCS now has an array of COPROCs; GPUs types are identified by the array index. Index zero means CPU. - a bunch of other resource-specific structs (like RSC_WORK_FETCH) are now stored in arrays, with same indices as COPROCS (i.e. index 0 is CPU) - COPROCS still has COPROC_NVIDIA and COPROC_ATI structs to hold vendor-specific info - APP_VERSION now has a struct GPU_USAGE to describe its GPU usage svn path=/trunk/boinc/; revision=23253
2011-03-25 03:44:09 +00:00
int nvidia_compare(COPROC_NVIDIA& c1, COPROC_NVIDIA& c2, bool loose) {
if (c1.prop.major > c2.prop.major) return 1;
if (c1.prop.major < c2.prop.major) return -1;
if (c1.prop.minor > c2.prop.minor) return 1;
if (c1.prop.minor < c2.prop.minor) return -1;
if (c1.cuda_version > c2.cuda_version) return 1;
if (c1.cuda_version < c2.cuda_version) return -1;
if (loose) {
if (c1.prop.totalGlobalMem > 1.4*c2.prop.totalGlobalMem) return 1;
if (c1.prop.totalGlobalMem < .7* c2.prop.totalGlobalMem) return -1;
return 0;
}
if (c1.prop.totalGlobalMem > c2.prop.totalGlobalMem) return 1;
if (c1.prop.totalGlobalMem < c2.prop.totalGlobalMem) return -1;
double s1 = c1.peak_flops;
double s2 = c2.peak_flops;
if (s1 > s2) return 1;
if (s1 < s2) return -1;
return 0;
}
enum CUdevice_attribute_enum {
CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_BLOCK = 1,
CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_X = 2,
CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Y = 3,
CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Z = 4,
CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_X = 5,
CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Y = 6,
CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Z = 7,
CU_DEVICE_ATTRIBUTE_SHARED_MEMORY_PER_BLOCK = 8,
CU_DEVICE_ATTRIBUTE_TOTAL_CONSTANT_MEMORY = 9,
CU_DEVICE_ATTRIBUTE_WARP_SIZE = 10,
CU_DEVICE_ATTRIBUTE_MAX_PITCH = 11,
CU_DEVICE_ATTRIBUTE_REGISTERS_PER_BLOCK = 12,
CU_DEVICE_ATTRIBUTE_CLOCK_RATE = 13,
CU_DEVICE_ATTRIBUTE_TEXTURE_ALIGNMENT = 14,
CU_DEVICE_ATTRIBUTE_GPU_OVERLAP = 15,
CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT = 16,
CU_DEVICE_ATTRIBUTE_KERNEL_EXEC_TIMEOUT = 17,
CU_DEVICE_ATTRIBUTE_INTEGRATED = 18,
CU_DEVICE_ATTRIBUTE_CAN_MAP_HOST_MEMORY = 19,
CU_DEVICE_ATTRIBUTE_COMPUTE_MODE = 20
};
#ifdef _WIN32
typedef int (__stdcall *CUDA_GDC)(int *count);
typedef int (__stdcall *CUDA_GDV)(int* version);
typedef int (__stdcall *CUDA_GDI)(int);
typedef int (__stdcall *CUDA_GDG)(int*, int);
typedef int (__stdcall *CUDA_GDA)(int*, int, int);
typedef int (__stdcall *CUDA_GDN)(char*, int, int);
typedef int (__stdcall *CUDA_GDM)(unsigned int*, int);
typedef int (__stdcall *CUDA_GDCC)(int*, int*, int);
typedef int (__stdcall *CUDA_CC)(unsigned int*, unsigned int, unsigned int);
typedef int (__stdcall *CUDA_CD)(unsigned int);
typedef int (__stdcall *CUDA_MA)(unsigned int*, unsigned int);
typedef int (__stdcall *CUDA_MF)(unsigned int);
typedef int (__stdcall *CUDA_MGI)(unsigned int*, unsigned int*);
CUDA_GDC __cuDeviceGetCount = NULL;
CUDA_GDV __cuDriverGetVersion = NULL;
CUDA_GDI __cuInit = NULL;
CUDA_GDG __cuDeviceGet = NULL;
CUDA_GDA __cuDeviceGetAttribute = NULL;
CUDA_GDN __cuDeviceGetName = NULL;
CUDA_GDM __cuDeviceTotalMem = NULL;
CUDA_GDCC __cuDeviceComputeCapability = NULL;
CUDA_CC __cuCtxCreate = NULL;
CUDA_CD __cuCtxDestroy = NULL;
CUDA_MA __cuMemAlloc = NULL;
CUDA_MF __cuMemFree = NULL;
CUDA_MGI __cuMemGetInfo = NULL;
#else
void* cudalib;
int (*__cuInit)(int);
int (*__cuDeviceGetCount)(int*);
int (*__cuDriverGetVersion)(int*);
int (*__cuDeviceGet)(int*, int);
int (*__cuDeviceGetAttribute)(int*, int, int);
int (*__cuDeviceGetName)(char*, int, int);
int (*__cuDeviceTotalMem)(unsigned int*, int);
int (*__cuDeviceComputeCapability)(int*, int*, int);
int (*__cuCtxCreate)(unsigned int*, unsigned int, unsigned int);
int (*__cuCtxDestroy)(unsigned int);
int (*__cuMemAlloc)(unsigned int*, unsigned int);
int (*__cuMemFree)(unsigned int);
int (*__cuMemGetInfo)(unsigned int*, unsigned int*);
#endif
// NVIDIA interfaces are documented here:
// http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/online/index.html
- client: generalize the GPU framework so that - new GPU types can be added easily - users can specify GPUs in cc_config.xml, referred to by app_info.xml, and they will be scheduled by BOINC and passed --device N options Note: the parsing of cc_config.xml is not done yet. - RPC protocols (account manager and scheduler) can now specify GPU types in separate elements rather than embedding them in tag names e.g. <no_rsc>NVIDIA</no_rsc> rather than <no_cuda/> - client: in account manager replies, parse elements of the form <no_rsc>NAME</no_rsc> indicating the GPUs of type NAME should not be used. This allows account managers to control GPU types not hardwired into the client. Note: <no_cuda/> and <no_ati/> will continue to be supported. - scheduler RPC reply: add <no_rsc_apps>NAME</no_rsc_apps> (NAME = GPU name) to indicate that the project has no jobs for the indicated GPU type. <no_cuda_apps> etc. are still supported - client/lib: remove set_debts() GUI RPC - client/scheduler RPC remove <cuda_backoff> etc. (superceded by no_app) Exception: <ip_result> elements in sched request still have <ncudas> and <natis>. Fix this later. Implementation notes: - client/lib: change "CUDA" to "NVIDIA" in type/variable names, and in XML Continue to recognize "CUDA" for compatibility - host_info.coprocs no longer used within the client; use a global var (COPROCS coprocs) instead. COPROCS now has an array of COPROCs; GPUs types are identified by the array index. Index zero means CPU. - a bunch of other resource-specific structs (like RSC_WORK_FETCH) are now stored in arrays, with same indices as COPROCS (i.e. index 0 is CPU) - COPROCS still has COPROC_NVIDIA and COPROC_ATI structs to hold vendor-specific info - APP_VERSION now has a struct GPU_USAGE to describe its GPU usage svn path=/trunk/boinc/; revision=23253
2011-03-25 03:44:09 +00:00
void COPROC_NVIDIA::get(
bool use_all, // if false, use only those equivalent to most capable
vector<string>& descs,
vector<string>& warnings,
vector<int>& ignore_devs
) {
int count, retval;
char buf[256];
#ifdef _WIN32
HMODULE cudalib = LoadLibrary("nvcuda.dll");
if (!cudalib) {
warnings.push_back("No NVIDIA library found");
return;
}
__cuDeviceGetCount = (CUDA_GDC)GetProcAddress( cudalib, "cuDeviceGetCount" );
__cuDriverGetVersion = (CUDA_GDV)GetProcAddress( cudalib, "cuDriverGetVersion" );
__cuInit = (CUDA_GDI)GetProcAddress( cudalib, "cuInit" );
__cuDeviceGet = (CUDA_GDG)GetProcAddress( cudalib, "cuDeviceGet" );
__cuDeviceGetAttribute = (CUDA_GDA)GetProcAddress( cudalib, "cuDeviceGetAttribute" );
__cuDeviceGetName = (CUDA_GDN)GetProcAddress( cudalib, "cuDeviceGetName" );
__cuDeviceTotalMem = (CUDA_GDM)GetProcAddress( cudalib, "cuDeviceTotalMem" );
__cuDeviceComputeCapability = (CUDA_GDCC)GetProcAddress( cudalib, "cuDeviceComputeCapability" );
__cuCtxCreate = (CUDA_CC)GetProcAddress( cudalib, "cuCtxCreate" );
__cuCtxDestroy = (CUDA_CD)GetProcAddress( cudalib, "cuCtxDestroy" );
__cuMemAlloc = (CUDA_MA)GetProcAddress( cudalib, "cuMemAlloc" );
__cuMemFree = (CUDA_MF)GetProcAddress( cudalib, "cuMemFree" );
__cuMemGetInfo = (CUDA_MGI)GetProcAddress( cudalib, "cuMemGetInfo" );
#ifndef SIM
NvAPI_Status nvapiStatus;
NvDisplayHandle hDisplay;
NV_DISPLAY_DRIVER_VERSION Version;
memset(&Version, 0, sizeof(Version));
Version.version = NV_DISPLAY_DRIVER_VERSION_VER;
NvAPI_Initialize();
for (int i=0; ; i++) {
nvapiStatus = NvAPI_EnumNvidiaDisplayHandle(i, &hDisplay);
if (nvapiStatus != NVAPI_OK) break;
nvapiStatus = NvAPI_GetDisplayDriverVersion(hDisplay, &Version);
if (nvapiStatus == NVAPI_OK) break;
}
#endif
#else
#ifdef __APPLE__
cudalib = dlopen("/usr/local/cuda/lib/libcuda.dylib", RTLD_NOW);
#else
cudalib = dlopen("libcuda.so", RTLD_NOW);
#endif
if (!cudalib) {
warnings.push_back("No NVIDIA library found");
return;
}
__cuDeviceGetCount = (int(*)(int*)) dlsym(cudalib, "cuDeviceGetCount");
__cuDriverGetVersion = (int(*)(int*)) dlsym( cudalib, "cuDriverGetVersion" );
__cuInit = (int(*)(int)) dlsym( cudalib, "cuInit" );
__cuDeviceGet = (int(*)(int*, int)) dlsym( cudalib, "cuDeviceGet" );
__cuDeviceGetAttribute = (int(*)(int*, int, int)) dlsym( cudalib, "cuDeviceGetAttribute" );
__cuDeviceGetName = (int(*)(char*, int, int)) dlsym( cudalib, "cuDeviceGetName" );
__cuDeviceTotalMem = (int(*)(unsigned int*, int)) dlsym( cudalib, "cuDeviceTotalMem" );
__cuDeviceComputeCapability = (int(*)(int*, int*, int)) dlsym( cudalib, "cuDeviceComputeCapability" );
__cuCtxCreate = (int(*)(unsigned int*, unsigned int, unsigned int)) dlsym( cudalib, "cuCtxCreate" );
__cuCtxDestroy = (int(*)(unsigned int)) dlsym( cudalib, "cuCtxDestroy" );
__cuMemAlloc = (int(*)(unsigned int*, unsigned int)) dlsym( cudalib, "cuMemAlloc" );
__cuMemFree = (int(*)(unsigned int)) dlsym( cudalib, "cuMemFree" );
__cuMemGetInfo = (int(*)(unsigned int*, unsigned int*)) dlsym( cudalib, "cuMemGetInfo" );
#endif
if (!__cuDriverGetVersion) {
warnings.push_back("cuDriverGetVersion() missing from NVIDIA library");
return;
}
if (!__cuInit) {
warnings.push_back("cuInit() missing from NVIDIA library");
return;
}
if (!__cuDeviceGetCount) {
warnings.push_back("cuDeviceGetCount() missing from NVIDIA library");
return;
}
if (!__cuDeviceGet) {
warnings.push_back("cuDeviceGet() missing from NVIDIA library");
return;
}
if (!__cuDeviceGetAttribute) {
warnings.push_back("cuDeviceGetAttribute() missing from NVIDIA library");
return;
}
if (!__cuDeviceTotalMem) {
warnings.push_back("cuDeviceTotalMem() missing from NVIDIA library");
return;
}
if (!__cuDeviceComputeCapability) {
warnings.push_back("cuDeviceComputeCapability() missing from NVIDIA library");
return;
}
if (!__cuCtxCreate) {
warnings.push_back("cuCtxCreate() missing from NVIDIA library");
return;
}
if (!__cuCtxDestroy) {
warnings.push_back("cuCtxDestroy() missing from NVIDIA library");
return;
}
if (!__cuMemAlloc) {
warnings.push_back("cuMemAlloc() missing from NVIDIA library");
return;
}
if (!__cuMemFree) {
warnings.push_back("cuMemFree() missing from NVIDIA library");
return;
}
if (!__cuMemGetInfo) {
warnings.push_back("cuMemGetInfo() missing from NVIDIA library");
return;
}
retval = (*__cuInit)(0);
if (retval) {
sprintf(buf, "NVIDIA drivers present but no GPUs found");
warnings.push_back(buf);
return;
}
int cuda_version;
retval = (*__cuDriverGetVersion)(&cuda_version);
if (retval) {
sprintf(buf, "cuDriverGetVersion() returned %d", retval);
warnings.push_back(buf);
return;
}
- client: generalize the GPU framework so that - new GPU types can be added easily - users can specify GPUs in cc_config.xml, referred to by app_info.xml, and they will be scheduled by BOINC and passed --device N options Note: the parsing of cc_config.xml is not done yet. - RPC protocols (account manager and scheduler) can now specify GPU types in separate elements rather than embedding them in tag names e.g. <no_rsc>NVIDIA</no_rsc> rather than <no_cuda/> - client: in account manager replies, parse elements of the form <no_rsc>NAME</no_rsc> indicating the GPUs of type NAME should not be used. This allows account managers to control GPU types not hardwired into the client. Note: <no_cuda/> and <no_ati/> will continue to be supported. - scheduler RPC reply: add <no_rsc_apps>NAME</no_rsc_apps> (NAME = GPU name) to indicate that the project has no jobs for the indicated GPU type. <no_cuda_apps> etc. are still supported - client/lib: remove set_debts() GUI RPC - client/scheduler RPC remove <cuda_backoff> etc. (superceded by no_app) Exception: <ip_result> elements in sched request still have <ncudas> and <natis>. Fix this later. Implementation notes: - client/lib: change "CUDA" to "NVIDIA" in type/variable names, and in XML Continue to recognize "CUDA" for compatibility - host_info.coprocs no longer used within the client; use a global var (COPROCS coprocs) instead. COPROCS now has an array of COPROCs; GPUs types are identified by the array index. Index zero means CPU. - a bunch of other resource-specific structs (like RSC_WORK_FETCH) are now stored in arrays, with same indices as COPROCS (i.e. index 0 is CPU) - COPROCS still has COPROC_NVIDIA and COPROC_ATI structs to hold vendor-specific info - APP_VERSION now has a struct GPU_USAGE to describe its GPU usage svn path=/trunk/boinc/; revision=23253
2011-03-25 03:44:09 +00:00
vector<COPROC_NVIDIA> gpus;
retval = (*__cuDeviceGetCount)(&count);
if (retval) {
sprintf(buf, "cuDeviceGetCount() returned %d", retval);
warnings.push_back(buf);
return;
}
sprintf(buf, "NVIDIA library reports %d GPU%s", count, (count==1)?"":"s");
warnings.push_back(buf);
int j;
unsigned int i;
- client: generalize the GPU framework so that - new GPU types can be added easily - users can specify GPUs in cc_config.xml, referred to by app_info.xml, and they will be scheduled by BOINC and passed --device N options Note: the parsing of cc_config.xml is not done yet. - RPC protocols (account manager and scheduler) can now specify GPU types in separate elements rather than embedding them in tag names e.g. <no_rsc>NVIDIA</no_rsc> rather than <no_cuda/> - client: in account manager replies, parse elements of the form <no_rsc>NAME</no_rsc> indicating the GPUs of type NAME should not be used. This allows account managers to control GPU types not hardwired into the client. Note: <no_cuda/> and <no_ati/> will continue to be supported. - scheduler RPC reply: add <no_rsc_apps>NAME</no_rsc_apps> (NAME = GPU name) to indicate that the project has no jobs for the indicated GPU type. <no_cuda_apps> etc. are still supported - client/lib: remove set_debts() GUI RPC - client/scheduler RPC remove <cuda_backoff> etc. (superceded by no_app) Exception: <ip_result> elements in sched request still have <ncudas> and <natis>. Fix this later. Implementation notes: - client/lib: change "CUDA" to "NVIDIA" in type/variable names, and in XML Continue to recognize "CUDA" for compatibility - host_info.coprocs no longer used within the client; use a global var (COPROCS coprocs) instead. COPROCS now has an array of COPROCs; GPUs types are identified by the array index. Index zero means CPU. - a bunch of other resource-specific structs (like RSC_WORK_FETCH) are now stored in arrays, with same indices as COPROCS (i.e. index 0 is CPU) - COPROCS still has COPROC_NVIDIA and COPROC_ATI structs to hold vendor-specific info - APP_VERSION now has a struct GPU_USAGE to describe its GPU usage svn path=/trunk/boinc/; revision=23253
2011-03-25 03:44:09 +00:00
COPROC_NVIDIA cc;
string s;
for (j=0; j<count; j++) {
memset(&cc.prop, 0, sizeof(cc.prop));
int device;
retval = (*__cuDeviceGet)(&device, j);
if (retval) {
sprintf(buf, "cuDeviceGet(%d) returned %d", j, retval);
warnings.push_back(buf);
return;
}
cc.prop.deviceHandle = device;
(*__cuDeviceGetName)(cc.prop.name, 256, device);
if (retval) {
sprintf(buf, "cuDeviceGetName(%d) returned %d", j, retval);
warnings.push_back(buf);
return;
}
(*__cuDeviceComputeCapability)(&cc.prop.major, &cc.prop.minor, device);
(*__cuDeviceTotalMem)(&cc.prop.totalGlobalMem, device);
(*__cuDeviceGetAttribute)(&cc.prop.sharedMemPerBlock, CU_DEVICE_ATTRIBUTE_SHARED_MEMORY_PER_BLOCK, device);
(*__cuDeviceGetAttribute)(&cc.prop.regsPerBlock, CU_DEVICE_ATTRIBUTE_REGISTERS_PER_BLOCK, device);
(*__cuDeviceGetAttribute)(&cc.prop.warpSize, CU_DEVICE_ATTRIBUTE_WARP_SIZE, device);
(*__cuDeviceGetAttribute)(&cc.prop.memPitch, CU_DEVICE_ATTRIBUTE_MAX_PITCH, device);
retval = (*__cuDeviceGetAttribute)(&cc.prop.maxThreadsPerBlock, CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_BLOCK, device);
retval = (*__cuDeviceGetAttribute)(&cc.prop.maxThreadsDim[0], CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_X, device);
(*__cuDeviceGetAttribute)(&cc.prop.maxThreadsDim[1], CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Y, device);
(*__cuDeviceGetAttribute)(&cc.prop.maxThreadsDim[2], CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Z, device);
(*__cuDeviceGetAttribute)(&cc.prop.maxGridSize[0], CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_X, device);
(*__cuDeviceGetAttribute)(&cc.prop.maxGridSize[1], CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Y, device);
(*__cuDeviceGetAttribute)(&cc.prop.maxGridSize[2], CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Z, device);
(*__cuDeviceGetAttribute)(&cc.prop.clockRate, CU_DEVICE_ATTRIBUTE_CLOCK_RATE, device);
(*__cuDeviceGetAttribute)(&cc.prop.totalConstMem, CU_DEVICE_ATTRIBUTE_TOTAL_CONSTANT_MEMORY, device);
(*__cuDeviceGetAttribute)(&cc.prop.textureAlignment, CU_DEVICE_ATTRIBUTE_TEXTURE_ALIGNMENT, device);
(*__cuDeviceGetAttribute)(&cc.prop.deviceOverlap, CU_DEVICE_ATTRIBUTE_GPU_OVERLAP, device);
retval = (*__cuDeviceGetAttribute)(&cc.prop.multiProcessorCount, CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT, device);
//retval = (*__cuDeviceGetProperties)(&cc.prop, device);
if (cc.prop.major <= 0) continue; // major == 0 means emulation
if (cc.prop.major > 100) continue; // e.g. 9999 is an error
#if defined(_WIN32) && !defined(SIM)
cc.display_driver_version = Version.drvVersion;
#else
cc.display_driver_version = 0;
#endif
cc.have_cuda = true;
cc.cuda_version = cuda_version;
cc.device_num = j;
cc.set_peak_flops();
gpus.push_back(cc);
}
if (!gpus.size()) {
warnings.push_back("No CUDA-capable NVIDIA GPUs found");
return;
}
// identify the most capable non-ignored instance
//
- client: generalize the GPU framework so that - new GPU types can be added easily - users can specify GPUs in cc_config.xml, referred to by app_info.xml, and they will be scheduled by BOINC and passed --device N options Note: the parsing of cc_config.xml is not done yet. - RPC protocols (account manager and scheduler) can now specify GPU types in separate elements rather than embedding them in tag names e.g. <no_rsc>NVIDIA</no_rsc> rather than <no_cuda/> - client: in account manager replies, parse elements of the form <no_rsc>NAME</no_rsc> indicating the GPUs of type NAME should not be used. This allows account managers to control GPU types not hardwired into the client. Note: <no_cuda/> and <no_ati/> will continue to be supported. - scheduler RPC reply: add <no_rsc_apps>NAME</no_rsc_apps> (NAME = GPU name) to indicate that the project has no jobs for the indicated GPU type. <no_cuda_apps> etc. are still supported - client/lib: remove set_debts() GUI RPC - client/scheduler RPC remove <cuda_backoff> etc. (superceded by no_app) Exception: <ip_result> elements in sched request still have <ncudas> and <natis>. Fix this later. Implementation notes: - client/lib: change "CUDA" to "NVIDIA" in type/variable names, and in XML Continue to recognize "CUDA" for compatibility - host_info.coprocs no longer used within the client; use a global var (COPROCS coprocs) instead. COPROCS now has an array of COPROCs; GPUs types are identified by the array index. Index zero means CPU. - a bunch of other resource-specific structs (like RSC_WORK_FETCH) are now stored in arrays, with same indices as COPROCS (i.e. index 0 is CPU) - COPROCS still has COPROC_NVIDIA and COPROC_ATI structs to hold vendor-specific info - APP_VERSION now has a struct GPU_USAGE to describe its GPU usage svn path=/trunk/boinc/; revision=23253
2011-03-25 03:44:09 +00:00
COPROC_NVIDIA best;
bool first = true;
for (i=0; i<gpus.size(); i++) {
if (in_vector(gpus[i].device_num, ignore_devs)) continue;
if (first) {
best = gpus[i];
first = false;
- client: generalize the GPU framework so that - new GPU types can be added easily - users can specify GPUs in cc_config.xml, referred to by app_info.xml, and they will be scheduled by BOINC and passed --device N options Note: the parsing of cc_config.xml is not done yet. - RPC protocols (account manager and scheduler) can now specify GPU types in separate elements rather than embedding them in tag names e.g. <no_rsc>NVIDIA</no_rsc> rather than <no_cuda/> - client: in account manager replies, parse elements of the form <no_rsc>NAME</no_rsc> indicating the GPUs of type NAME should not be used. This allows account managers to control GPU types not hardwired into the client. Note: <no_cuda/> and <no_ati/> will continue to be supported. - scheduler RPC reply: add <no_rsc_apps>NAME</no_rsc_apps> (NAME = GPU name) to indicate that the project has no jobs for the indicated GPU type. <no_cuda_apps> etc. are still supported - client/lib: remove set_debts() GUI RPC - client/scheduler RPC remove <cuda_backoff> etc. (superceded by no_app) Exception: <ip_result> elements in sched request still have <ncudas> and <natis>. Fix this later. Implementation notes: - client/lib: change "CUDA" to "NVIDIA" in type/variable names, and in XML Continue to recognize "CUDA" for compatibility - host_info.coprocs no longer used within the client; use a global var (COPROCS coprocs) instead. COPROCS now has an array of COPROCs; GPUs types are identified by the array index. Index zero means CPU. - a bunch of other resource-specific structs (like RSC_WORK_FETCH) are now stored in arrays, with same indices as COPROCS (i.e. index 0 is CPU) - COPROCS still has COPROC_NVIDIA and COPROC_ATI structs to hold vendor-specific info - APP_VERSION now has a struct GPU_USAGE to describe its GPU usage svn path=/trunk/boinc/; revision=23253
2011-03-25 03:44:09 +00:00
} else if (nvidia_compare(gpus[i], best, false) > 0) {
best = gpus[i];
}
}
// see which other instances are equivalent,
// and set the "count" and "device_nums" fields
//
best.count = 0;
for (i=0; i<gpus.size(); i++) {
char buf2[256];
gpus[i].description(buf);
if (in_vector(gpus[i].device_num, ignore_devs)) {
sprintf(buf2, "NVIDIA GPU %d (ignored by config): %s", gpus[i].device_num, buf);
- client: generalize the GPU framework so that - new GPU types can be added easily - users can specify GPUs in cc_config.xml, referred to by app_info.xml, and they will be scheduled by BOINC and passed --device N options Note: the parsing of cc_config.xml is not done yet. - RPC protocols (account manager and scheduler) can now specify GPU types in separate elements rather than embedding them in tag names e.g. <no_rsc>NVIDIA</no_rsc> rather than <no_cuda/> - client: in account manager replies, parse elements of the form <no_rsc>NAME</no_rsc> indicating the GPUs of type NAME should not be used. This allows account managers to control GPU types not hardwired into the client. Note: <no_cuda/> and <no_ati/> will continue to be supported. - scheduler RPC reply: add <no_rsc_apps>NAME</no_rsc_apps> (NAME = GPU name) to indicate that the project has no jobs for the indicated GPU type. <no_cuda_apps> etc. are still supported - client/lib: remove set_debts() GUI RPC - client/scheduler RPC remove <cuda_backoff> etc. (superceded by no_app) Exception: <ip_result> elements in sched request still have <ncudas> and <natis>. Fix this later. Implementation notes: - client/lib: change "CUDA" to "NVIDIA" in type/variable names, and in XML Continue to recognize "CUDA" for compatibility - host_info.coprocs no longer used within the client; use a global var (COPROCS coprocs) instead. COPROCS now has an array of COPROCs; GPUs types are identified by the array index. Index zero means CPU. - a bunch of other resource-specific structs (like RSC_WORK_FETCH) are now stored in arrays, with same indices as COPROCS (i.e. index 0 is CPU) - COPROCS still has COPROC_NVIDIA and COPROC_ATI structs to hold vendor-specific info - APP_VERSION now has a struct GPU_USAGE to describe its GPU usage svn path=/trunk/boinc/; revision=23253
2011-03-25 03:44:09 +00:00
} else if (use_all || !nvidia_compare(gpus[i], best, true)) {
best.device_nums[best.count] = gpus[i].device_num;
best.count++;
sprintf(buf2, "NVIDIA GPU %d: %s", gpus[i].device_num, buf);
} else {
sprintf(buf2, "NVIDIA GPU %d (not used): %s", gpus[i].device_num, buf);
}
descs.push_back(string(buf2));
}
if (best.count) {
*this = best;
}
}
// fake a NVIDIA GPU (for debugging)
//
- client: generalize the GPU framework so that - new GPU types can be added easily - users can specify GPUs in cc_config.xml, referred to by app_info.xml, and they will be scheduled by BOINC and passed --device N options Note: the parsing of cc_config.xml is not done yet. - RPC protocols (account manager and scheduler) can now specify GPU types in separate elements rather than embedding them in tag names e.g. <no_rsc>NVIDIA</no_rsc> rather than <no_cuda/> - client: in account manager replies, parse elements of the form <no_rsc>NAME</no_rsc> indicating the GPUs of type NAME should not be used. This allows account managers to control GPU types not hardwired into the client. Note: <no_cuda/> and <no_ati/> will continue to be supported. - scheduler RPC reply: add <no_rsc_apps>NAME</no_rsc_apps> (NAME = GPU name) to indicate that the project has no jobs for the indicated GPU type. <no_cuda_apps> etc. are still supported - client/lib: remove set_debts() GUI RPC - client/scheduler RPC remove <cuda_backoff> etc. (superceded by no_app) Exception: <ip_result> elements in sched request still have <ncudas> and <natis>. Fix this later. Implementation notes: - client/lib: change "CUDA" to "NVIDIA" in type/variable names, and in XML Continue to recognize "CUDA" for compatibility - host_info.coprocs no longer used within the client; use a global var (COPROCS coprocs) instead. COPROCS now has an array of COPROCs; GPUs types are identified by the array index. Index zero means CPU. - a bunch of other resource-specific structs (like RSC_WORK_FETCH) are now stored in arrays, with same indices as COPROCS (i.e. index 0 is CPU) - COPROCS still has COPROC_NVIDIA and COPROC_ATI structs to hold vendor-specific info - APP_VERSION now has a struct GPU_USAGE to describe its GPU usage svn path=/trunk/boinc/; revision=23253
2011-03-25 03:44:09 +00:00
void COPROC_NVIDIA::fake(int driver_version, double ram, int n) {
strcpy(type, "NVIDIA");
count = n;
for (int i=0; i<count; i++) {
device_nums[i] = i;
}
display_driver_version = driver_version;
cuda_version = 2020;
strcpy(prop.name, "Fake NVIDIA GPU");
prop.totalGlobalMem = (unsigned int)ram;
prop.sharedMemPerBlock = 100;
prop.regsPerBlock = 8;
prop.warpSize = 10;
prop.memPitch = 10;
prop.maxThreadsPerBlock = 20;
prop.maxThreadsDim[0] = 2;
prop.maxThreadsDim[1] = 2;
prop.maxThreadsDim[2] = 2;
prop.maxGridSize[0] = 10;
prop.maxGridSize[1] = 10;
prop.maxGridSize[2] = 10;
prop.totalConstMem = 10;
prop.major = 1;
prop.minor = 2;
prop.clockRate = 1250000;
prop.textureAlignment = 1000;
prop.multiProcessorCount = 14;
set_peak_flops();
}
// See how much RAM is available on each GPU.
// If this fails, set "available_ram_unknown"
//
- client: generalize the GPU framework so that - new GPU types can be added easily - users can specify GPUs in cc_config.xml, referred to by app_info.xml, and they will be scheduled by BOINC and passed --device N options Note: the parsing of cc_config.xml is not done yet. - RPC protocols (account manager and scheduler) can now specify GPU types in separate elements rather than embedding them in tag names e.g. <no_rsc>NVIDIA</no_rsc> rather than <no_cuda/> - client: in account manager replies, parse elements of the form <no_rsc>NAME</no_rsc> indicating the GPUs of type NAME should not be used. This allows account managers to control GPU types not hardwired into the client. Note: <no_cuda/> and <no_ati/> will continue to be supported. - scheduler RPC reply: add <no_rsc_apps>NAME</no_rsc_apps> (NAME = GPU name) to indicate that the project has no jobs for the indicated GPU type. <no_cuda_apps> etc. are still supported - client/lib: remove set_debts() GUI RPC - client/scheduler RPC remove <cuda_backoff> etc. (superceded by no_app) Exception: <ip_result> elements in sched request still have <ncudas> and <natis>. Fix this later. Implementation notes: - client/lib: change "CUDA" to "NVIDIA" in type/variable names, and in XML Continue to recognize "CUDA" for compatibility - host_info.coprocs no longer used within the client; use a global var (COPROCS coprocs) instead. COPROCS now has an array of COPROCs; GPUs types are identified by the array index. Index zero means CPU. - a bunch of other resource-specific structs (like RSC_WORK_FETCH) are now stored in arrays, with same indices as COPROCS (i.e. index 0 is CPU) - COPROCS still has COPROC_NVIDIA and COPROC_ATI structs to hold vendor-specific info - APP_VERSION now has a struct GPU_USAGE to describe its GPU usage svn path=/trunk/boinc/; revision=23253
2011-03-25 03:44:09 +00:00
void COPROC_NVIDIA::get_available_ram() {
#ifdef MEASURE_AVAILABLE_RAM
int device, i, retval;
unsigned int memfree, memtotal;
unsigned int ctx;
// avoid crash if faked GPU
//
if (!__cuDeviceGet) {
for (i=0; i<count; i++) {
available_ram[i] = available_ram_fake[i];
available_ram_unknown[i] = false;
}
return;
}
for (i=0; i<count; i++) {
int devnum = device_nums[i];
available_ram[i] = 0;
available_ram_unknown[i] = true;
retval = (*__cuDeviceGet)(&device, devnum);
if (retval) {
if (log_flags.coproc_debug) {
msg_printf(0, MSG_INFO,
"[coproc] cuDeviceGet(%d) returned %d", devnum, retval
);
}
continue;
}
retval = (*__cuCtxCreate)(&ctx, 0, device);
if (retval) {
if (log_flags.coproc_debug) {
msg_printf(0, MSG_INFO,
"[coproc] cuCtxCreate(%d) returned %d", devnum, retval
);
}
continue;
}
retval = (*__cuMemGetInfo)(&memfree, &memtotal);
if (retval) {
if (log_flags.coproc_debug) {
msg_printf(0, MSG_INFO,
"[coproc] cuMemGetInfo(%d) returned %d", devnum, retval
);
}
(*__cuCtxDestroy)(ctx);
continue;
}
(*__cuCtxDestroy)(ctx);
available_ram[i] = (double) memfree;
available_ram_unknown[i] = false;
}
#else
for (int i=0; i<count; i++) {
available_ram_unknown[i] = false;
available_ram[i] = prop.totalGlobalMem;
}
#endif
}
// check whether each GPU is running a graphics app (assume yes)
// return true if there's been a change since last time
//
- client: generalize the GPU framework so that - new GPU types can be added easily - users can specify GPUs in cc_config.xml, referred to by app_info.xml, and they will be scheduled by BOINC and passed --device N options Note: the parsing of cc_config.xml is not done yet. - RPC protocols (account manager and scheduler) can now specify GPU types in separate elements rather than embedding them in tag names e.g. <no_rsc>NVIDIA</no_rsc> rather than <no_cuda/> - client: in account manager replies, parse elements of the form <no_rsc>NAME</no_rsc> indicating the GPUs of type NAME should not be used. This allows account managers to control GPU types not hardwired into the client. Note: <no_cuda/> and <no_ati/> will continue to be supported. - scheduler RPC reply: add <no_rsc_apps>NAME</no_rsc_apps> (NAME = GPU name) to indicate that the project has no jobs for the indicated GPU type. <no_cuda_apps> etc. are still supported - client/lib: remove set_debts() GUI RPC - client/scheduler RPC remove <cuda_backoff> etc. (superceded by no_app) Exception: <ip_result> elements in sched request still have <ncudas> and <natis>. Fix this later. Implementation notes: - client/lib: change "CUDA" to "NVIDIA" in type/variable names, and in XML Continue to recognize "CUDA" for compatibility - host_info.coprocs no longer used within the client; use a global var (COPROCS coprocs) instead. COPROCS now has an array of COPROCs; GPUs types are identified by the array index. Index zero means CPU. - a bunch of other resource-specific structs (like RSC_WORK_FETCH) are now stored in arrays, with same indices as COPROCS (i.e. index 0 is CPU) - COPROCS still has COPROC_NVIDIA and COPROC_ATI structs to hold vendor-specific info - APP_VERSION now has a struct GPU_USAGE to describe its GPU usage svn path=/trunk/boinc/; revision=23253
2011-03-25 03:44:09 +00:00
bool COPROC_NVIDIA::check_running_graphics_app() {
int retval, j;
bool change = false;
for (j=0; j<count; j++) {
bool new_val = true;
int device, kernel_timeout;
retval = (*__cuDeviceGet)(&device, j);
if (!retval) {
retval = (*__cuDeviceGetAttribute)(&kernel_timeout, CU_DEVICE_ATTRIBUTE_KERNEL_EXEC_TIMEOUT, device);
if (!retval && !kernel_timeout) {
new_val = false;
}
}
if (new_val != running_graphics_app[j]) {
change = true;
}
running_graphics_app[j] = new_val;
}
return change;
}
bool COPROC_NVIDIA::matches(OPENCL_DEVICE_PROP& OpenCLprop) {
//TODO: Temporary code for testing
if (log_flags.coproc_debug) {
msg_printf(0, MSG_INFO,
"[coproc-test] COPROC_NVIDIA: prop.deviceHandle = %d; OpenCLprop.device_id = %d",
prop.deviceHandle, (int)OpenCLprop.device_id);
msg_printf(0, MSG_INFO,
"[coproc-test] COPROC_NVIDIA: prop.totalGlobalMem = %u; OpenCLprop.global_RAM = %llu; OpenCLprop.local_RAM = %llu",
prop.totalGlobalMem, OpenCLprop.global_RAM, OpenCLprop.local_RAM);
}
#ifdef _WIN32
//TODO: Verify this test is correct
if (prop.deviceHandle != OpenCLprop.device_id) return false;
#else
if (strcmp(prop.name, OpenCLprop.name)) return false;
//TODO: Figure out why these don't match
//TODO: Should there be "loose" comparisons here?
// if (prop.totalGlobalMem != OpenCLprop.global_RAM) return false;
if ((prop.clockRate / 1000) != (int)OpenCLprop.max_clock_freq) return false;
#endif
return true;
}
////////////////// ATI STARTS HERE /////////////////
//
// Docs:
// http://developer.amd.com/gpu/ATIStreamSDK/assets/ATI_Stream_SDK_CAL_Programming_Guide_v2.0%5B1%5D.pdf
// ?? why don't they have HTML docs??
// criteria:
//
// - double precision support
// - local RAM
// - speed
//
int ati_compare(COPROC_ATI& c1, COPROC_ATI& c2, bool loose) {
if (c1.attribs.doublePrecision && !c2.attribs.doublePrecision) return 1;
if (!c1.attribs.doublePrecision && c2.attribs.doublePrecision) return -1;
if (loose) {
if (c1.attribs.localRAM> 1.4*c2.attribs.localRAM) return 1;
if (c1.attribs.localRAM< .7* c2.attribs.localRAM) return -1;
return 0;
}
if (c1.attribs.localRAM > c2.attribs.localRAM) return 1;
if (c1.attribs.localRAM < c2.attribs.localRAM) return -1;
double s1 = c1.peak_flops;
double s2 = c2.peak_flops;
if (s1 > s2) return 1;
if (s1 < s2) return -1;
return 0;
}
#ifdef _WIN32
typedef int (__stdcall *ATI_ATTRIBS) (CALdeviceattribs *attribs, CALuint ordinal);
typedef int (__stdcall *ATI_CLOSE)(void);
typedef int (__stdcall *ATI_GDC)(CALuint *numDevices);
typedef int (__stdcall *ATI_GDI)(void);
typedef int (__stdcall *ATI_INFO) (CALdeviceinfo *info, CALuint ordinal);
typedef int (__stdcall *ATI_VER) (CALuint *cal_major, CALuint *cal_minor, CALuint *cal_imp);
typedef int (__stdcall *ATI_STATUS) (CALdevicestatus*, CALdevice);
typedef int (__stdcall *ATI_DEVICEOPEN) (CALdevice*, CALuint);
typedef int (__stdcall *ATI_DEVICECLOSE) (CALdevice);
ATI_ATTRIBS __calDeviceGetAttribs = NULL;
ATI_CLOSE __calShutdown = NULL;
ATI_GDC __calDeviceGetCount = NULL;
ATI_GDI __calInit = NULL;
ATI_INFO __calDeviceGetInfo = NULL;
ATI_VER __calGetVersion = NULL;
ATI_STATUS __calDeviceGetStatus = NULL;
ATI_DEVICEOPEN __calDeviceOpen = NULL;
ATI_DEVICECLOSE __calDeviceClose = NULL;
#else
int (*__calInit)();
int (*__calGetVersion)(CALuint*, CALuint*, CALuint*);
int (*__calDeviceGetCount)(CALuint*);
int (*__calDeviceGetAttribs)(CALdeviceattribs*, CALuint);
int (*__calShutdown)();
int (*__calDeviceGetInfo)(CALdeviceinfo*, CALuint);
int (*__calDeviceGetStatus)(CALdevicestatus*, CALdevice);
int (*__calDeviceOpen)(CALdevice*, CALuint);
int (*__calDeviceClose)(CALdevice);
#endif
void COPROC_ATI::get(
bool use_all,
vector<string>& descs, vector<string>& warnings, vector<int>& ignore_devs
) {
CALuint numDevices, cal_major, cal_minor, cal_imp;
CALdevice device;
CALdeviceinfo info;
CALdeviceattribs attribs;
char buf[256];
bool amdrt_detected = false;
bool atirt_detected = false;
int retval;
unsigned int i;
attribs.struct_size = sizeof(CALdeviceattribs);
device = 0;
numDevices =0;
#ifdef _WIN32
#if defined _M_X64
const char* atilib_name = "aticalrt64.dll";
const char* amdlib_name = "amdcalrt64.dll";
#else
const char* atilib_name = "aticalrt.dll";
const char* amdlib_name = "amdcalrt.dll";
#endif
HINSTANCE callib = LoadLibrary(atilib_name);
if (callib) {
atirt_detected = true;
} else {
callib = LoadLibrary(amdlib_name);
if (callib) {
amdrt_detected = true;
}
}
if (!callib) {
warnings.push_back("No ATI library found.");
return;
}
__calInit = (ATI_GDI)GetProcAddress(callib, "calInit" );
__calGetVersion = (ATI_VER)GetProcAddress(callib, "calGetVersion" );
__calDeviceGetCount = (ATI_GDC)GetProcAddress(callib, "calDeviceGetCount" );
__calDeviceGetAttribs =(ATI_ATTRIBS)GetProcAddress(callib, "calDeviceGetAttribs" );
__calShutdown = (ATI_CLOSE)GetProcAddress(callib, "calShutdown" );
__calDeviceGetInfo = (ATI_INFO)GetProcAddress(callib, "calDeviceGetInfo" );
__calDeviceGetStatus = (ATI_STATUS)GetProcAddress(callib, "calDeviceGetStatus" );
__calDeviceOpen = (ATI_DEVICEOPEN)GetProcAddress(callib, "calDeviceOpen" );
__calDeviceClose = (ATI_DEVICECLOSE)GetProcAddress(callib, "calDeviceClose" );
#else
void* callib;
callib = dlopen("libaticalrt.so", RTLD_NOW);
if (!callib) {
warnings.push_back("No ATI library found");
return;
}
atirt_detected = true;
__calInit = (int(*)()) dlsym(callib, "calInit");
__calGetVersion = (int(*)(CALuint*, CALuint*, CALuint*)) dlsym(callib, "calGetVersion");
__calDeviceGetCount = (int(*)(CALuint*)) dlsym(callib, "calDeviceGetCount");
__calDeviceGetAttribs = (int(*)(CALdeviceattribs*, CALuint)) dlsym(callib, "calDeviceGetAttribs");
__calShutdown = (int(*)()) dlsym(callib, "calShutdown");
__calDeviceGetInfo = (int(*)(CALdeviceinfo*, CALuint)) dlsym(callib, "calDeviceGetInfo");
__calDeviceGetStatus = (int(*)(CALdevicestatus*, CALdevice)) dlsym(callib, "calDeviceGetStatus");
__calDeviceOpen = (int(*)(CALdevice*, CALuint)) dlsym(callib, "calDeviceOpen");
__calDeviceClose = (int(*)(CALdevice)) dlsym(callib, "calDeviceClose");
#endif
if (!__calInit) {
warnings.push_back("calInit() missing from CAL library");
return;
}
if (!__calGetVersion) {
warnings.push_back("calGetVersion() missing from CAL library");
return;
}
if (!__calDeviceGetCount) {
warnings.push_back("calDeviceGetCount() missing from CAL library");
return;
}
if (!__calDeviceGetAttribs) {
warnings.push_back("calDeviceGetAttribs() missing from CAL library");
return;
}
if (!__calDeviceGetInfo) {
warnings.push_back("calDeviceGetInfo() missing from CAL library");
return;
}
if (!__calDeviceGetStatus) {
warnings.push_back("calDeviceGetStatus() missing from CAL library");
return;
}
if (!__calDeviceOpen) {
warnings.push_back("calDeviceOpen() missing from CAL library");
return;
}
if (!__calDeviceClose) {
warnings.push_back("calDeviceClose() missing from CAL library");
return;
}
retval = (*__calInit)();
if (retval != CAL_RESULT_OK) {
sprintf(buf, "calInit() returned %d", retval);
warnings.push_back(buf);
return;
}
retval = (*__calDeviceGetCount)(&numDevices);
if (retval != CAL_RESULT_OK) {
sprintf(buf, "calDeviceGetCount() returned %d", retval);
warnings.push_back(buf);
return;
}
retval = (*__calGetVersion)(&cal_major, &cal_minor, &cal_imp);
if (retval != CAL_RESULT_OK) {
sprintf(buf, "calGetVersion() returned %d", retval);
warnings.push_back(buf);
return;
}
if (!numDevices) {
warnings.push_back("No usable CAL devices found");
return;
}
COPROC_ATI cc, cc2;
string s, gpu_name;
vector<COPROC_ATI> gpus;
for (CALuint i=0; i<numDevices; i++) {
retval = (*__calDeviceGetInfo)(&info, i);
if (retval != CAL_RESULT_OK) {
sprintf(buf, "calDeviceGetInfo() returned %d", retval);
warnings.push_back(buf);
return;
}
retval = (*__calDeviceGetAttribs)(&attribs, i);
if (retval != CAL_RESULT_OK) {
sprintf(buf, "calDeviceGetAttribs() returned %d", retval);
warnings.push_back(buf);
return;
}
switch ((int)attribs.target) {
case CAL_TARGET_600:
gpu_name="ATI Radeon HD 2900 (RV600)";
break;
case CAL_TARGET_610:
gpu_name="ATI Radeon HD 2300/2400/3200 (RV610)";
attribs.numberOfSIMD=1; // set correct values (reported wrong by driver)
attribs.wavefrontSize=32;
break;
case CAL_TARGET_630:
gpu_name="ATI Radeon HD 2600 (RV630)";
// set correct values (reported wrong by driver)
attribs.numberOfSIMD=3;
attribs.wavefrontSize=32;
break;
case CAL_TARGET_670:
gpu_name="ATI Radeon HD 3800 (RV670)";
break;
case CAL_TARGET_710:
gpu_name="ATI Radeon HD 4350/4550 (R710)";
break;
case CAL_TARGET_730:
gpu_name="ATI Radeon HD 4600 series (R730)";
break;
case CAL_TARGET_7XX:
gpu_name="ATI Radeon (RV700 class)";
break;
case CAL_TARGET_770:
gpu_name="ATI Radeon HD 4700/4800 (RV740/RV770)";
break;
case 8:
gpu_name="ATI Radeon HD 5800 series (Cypress)";
break;
case 9:
gpu_name="ATI Radeon HD 5700 series (Juniper)";
break;
case 10:
gpu_name="ATI Radeon HD 5x00 series (Redwood)";
break;
case 11:
gpu_name="ATI Radeon HD 5x00 series (Cedar)";
break;
//
// based on AMD's Stream SDK 2.3 shipped with AMD Catalyst 10.12 APP
//
// and by comments of Dr. Andreas Przystawik aka Gipsel at http://www.planet3dnow.de/vbulletin/showthread.php?p=4335830#post4335830
//
//
// added new/current/coming AMD RADEON GPUs/IGPs/APUs
case 12:
gpu_name="AMD SUMO";
break;
case 13:
gpu_name="AMD SUPERSUMO";
break;
case 14:
gpu_name="AMD Radeon HD 6250/6310 (Wrestler)";
break;
case 15:
gpu_name="AMD Radeon HD 6900 series (Cayman)";
break;
case 16:
gpu_name="AMD RESERVED2";
break;
case 17:
gpu_name="AMD Radeon HD 6800 series (Barts)";
break;
case 18:
gpu_name="AMD Radeon HD 6x00 series (Turks)";
break;
case 19:
gpu_name="AMD Radeon HD 6300 series (Caicos)";
break;
// there arent any other target ids inside the Shadercompiler (YET !!! )
default:
gpu_name="ATI unknown";
break;
}
cc.have_cal = true;
cc.attribs = attribs;
cc.info = info;
strcpy(cc.name, gpu_name.c_str());
sprintf(cc.version, "%d.%d.%d", cal_major, cal_minor, cal_imp);
cc.amdrt_detected = amdrt_detected;
cc.atirt_detected = atirt_detected;
cc.device_num = i;
cc.set_peak_flops();
gpus.push_back(cc);
}
// shut down, otherwise Lenovo won't be able to switch to low-power GPU
//
retval = (*__calShutdown)();
if (!gpus.size()) {
warnings.push_back("No ATI GPUs found");
return;
}
COPROC_ATI best;
bool first = true;
for (i=0; i<gpus.size(); i++) {
if (in_vector(gpus[i].device_num, ignore_devs)) continue;
if (first) {
best = gpus[i];
first = false;
} else if (ati_compare(gpus[i], best, false) > 0) {
best = gpus[i];
}
}
best.count = 0;
for (i=0; i<gpus.size(); i++) {
char buf[256], buf2[256];
gpus[i].description(buf);
if (in_vector(gpus[i].device_num, ignore_devs)) {
sprintf(buf2, "ATI GPU %d (ignored by config): %s", gpus[i].device_num, buf);
} else if (use_all || !ati_compare(gpus[i], best, true)) {
best.device_nums[best.count] = gpus[i].device_num;
best.count++;
sprintf(buf2, "ATI GPU %d: %s", gpus[i].device_num, buf);
} else {
sprintf(buf2, "ATI GPU %d: (not used) %s", gpus[i].device_num, buf);
}
descs.push_back(string(buf2));
}
if (best.count) {
*this = best;
}
}
void COPROC_ATI::fake(double ram, int n) {
strcpy(type, "ATI");
strcpy(version, "1.4.3");
strcpy(name, "foobar");
count = n;
memset(&attribs, 0, sizeof(attribs));
memset(&info, 0, sizeof(info));
attribs.localRAM = (int)(ram/MEGA);
attribs.numberOfSIMD = 32;
attribs.wavefrontSize = 32;
attribs.engineClock = 50;
for (int i=0; i<count; i++) {
device_nums[i] = i;
}
set_peak_flops();
}
void COPROC_ATI::get_available_ram() {
#ifdef MEASURE_AVAILABLE_RAM
CALdevicestatus st;
CALdevice dev;
int i, retval;
st.struct_size = sizeof(CALdevicestatus);
// avoid crash if faked GPU
if (!__calInit) {
for (i=0; i<count; i++) {
available_ram[i] = available_ram_fake[i];
available_ram_unknown[i] = false;
}
return;
}
for (i=0; i<count; i++) {
available_ram[i] = 0;
available_ram_unknown[i] = true;
}
retval = (*__calInit)();
if (retval) {
if (log_flags.coproc_debug) {
msg_printf(0, MSG_INFO,
"[coproc] calInit() returned %d", retval
);
}
return;
}
for (i=0; i<count; i++) {
int devnum = device_nums[i];
retval = (*__calDeviceOpen)(&dev, devnum);
if (retval) {
if (log_flags.coproc_debug) {
msg_printf(0, MSG_INFO,
"[coproc] calDeviceOpen(%d) returned %d", devnum, retval
);
}
continue;
}
retval = (*__calDeviceGetStatus)(&st, dev);
if (retval) {
if (log_flags.coproc_debug) {
msg_printf(0, MSG_INFO,
"[coproc] calDeviceGetStatus(%d) returned %d",
devnum, retval
);
}
(*__calDeviceClose)(dev);
continue;
}
available_ram[i] = st.availLocalRAM*MEGA;
available_ram_unknown[i] = false;
(*__calDeviceClose)(dev);
}
(*__calShutdown)();
#else
for (int i=0; i<count; i++) {
available_ram_unknown[i] = false;
available_ram[i] = attribs.localRAM*MEGA;
}
#endif
}
bool COPROC_ATI::matches(OPENCL_DEVICE_PROP& OpenCLprop) {
//TODO: Temporary code for testing
if (log_flags.coproc_debug) {
msg_printf(0, MSG_INFO,
"[coproc-test] COPROC_ATI: attribs.localRAM = %u; OpenCLprop.global_RAM = %llu; OpenCLprop.local_RAM = %llu",
attribs.localRAM, OpenCLprop.global_RAM, OpenCLprop.local_RAM);
}
if (strcmp(OpenCLprop.name, name)) return false;
//TODO: Should there be "loose" comparisons here?
if (attribs.localRAM != OpenCLprop.local_RAM) return false;
if (attribs.engineClock != OpenCLprop.max_clock_freq) return false;
return true;
}