boinc/client/coproc_detect.cpp

915 lines
31 KiB
C++
Raw Normal View History

// This file is part of BOINC.
// http://boinc.berkeley.edu
// Copyright (C) 2009 University of California
//
// BOINC is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License
// as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// BOINC is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with BOINC. If not, see <http://www.gnu.org/licenses/>.
// client-specific GPU code. Mostly GPU detection
#include "cpp.h"
#ifdef _WIN32
#include "boinc_win.h"
#ifndef SIM
#include <nvapi.h>
#endif
#else
#ifdef __APPLE__
// Suppress obsolete warning when building for OS 10.3.9
#define DLOPEN_NO_WARN
#endif
#include "config.h"
#include <dlfcn.h>
#include <setjmp.h>
#include <signal.h>
#endif
#include "coproc.h"
#include "str_util.h"
#include "util.h"
#include "client_state.h"
#include "client_msgs.h"
using std::string;
using std::vector;
//#define MEASURE_AVAILABLE_RAM
static bool in_vector(int n, vector<int>& v) {
for (unsigned int i=0; i<v.size(); i++) {
if (v[i] == n) return true;
}
return false;
}
#ifndef _WIN32
jmp_buf resume;
void segv_handler(int) {
longjmp(resume, 1);
}
#endif
void COPROC::print_available_ram() {
#ifdef MEASURE_AVAILABLE_RAM
if (gstate.now - last_print_time < 60) return;
last_print_time = gstate.now;
for (int i=0; i<count; i++) {
if (available_ram_unknown[i]) {
if (log_flags.coproc_debug) {
msg_printf(0, MSG_INFO,
"[coproc] %s device %d: available RAM unknown",
type, device_nums[i]
);
}
} else {
if (log_flags.coproc_debug) {
msg_printf(0, MSG_INFO,
"[coproc] %s device %d: available RAM %d MB",
type, device_nums[i],
(int)(available_ram[i]/MEGA)
);
}
}
}
#endif
}
void COPROCS::get(
bool use_all, vector<string>&descs, vector<string>&warnings,
vector<int>& ignore_cuda_dev,
vector<int>& ignore_ati_dev
) {
#ifdef _WIN32
COPROC_CUDA::get(*this, use_all, descs, warnings, ignore_cuda_dev);
COPROC_ATI::get(*this, descs, warnings, ignore_ati_dev);
#else
void (*old_sig)(int) = signal(SIGSEGV, segv_handler);
if (setjmp(resume)) {
warnings.push_back("Caught SIGSEGV in NVIDIA GPU detection");
} else {
COPROC_CUDA::get(*this, use_all, descs, warnings, ignore_cuda_dev);
}
#ifndef __APPLE__ // ATI does not yet support CAL on Macs
if (setjmp(resume)) {
warnings.push_back("Caught SIGSEGV in ATI GPU detection");
} else {
COPROC_ATI::get(*this, descs, warnings, ignore_ati_dev);
}
#endif
signal(SIGSEGV, old_sig);
#endif
}
// return 1/-1/0 if device 1 is more/less/same capable than device 2.
// If "loose", ignore FLOPS and tolerate small memory diff
//
int cuda_compare(COPROC_CUDA& c1, COPROC_CUDA& c2, bool loose) {
if (c1.prop.major > c2.prop.major) return 1;
if (c1.prop.major < c2.prop.major) return -1;
if (c1.prop.minor > c2.prop.minor) return 1;
if (c1.prop.minor < c2.prop.minor) return -1;
if (c1.cuda_version > c2.cuda_version) return 1;
if (c1.cuda_version < c2.cuda_version) return -1;
if (loose) {
if (c1.prop.totalGlobalMem > 1.4*c2.prop.totalGlobalMem) return 1;
if (c1.prop.totalGlobalMem < .7* c2.prop.totalGlobalMem) return -1;
return 0;
}
if (c1.prop.totalGlobalMem > c2.prop.totalGlobalMem) return 1;
if (c1.prop.totalGlobalMem < c2.prop.totalGlobalMem) return -1;
double s1 = c1.peak_flops();
double s2 = c2.peak_flops();
if (s1 > s2) return 1;
if (s1 < s2) return -1;
return 0;
}
#ifdef _WIN32
typedef int (__stdcall *CUDA_GDC)(int *count);
typedef int (__stdcall *CUDA_GDV)(int* version);
typedef int (__stdcall *CUDA_GDI)(int);
typedef int (__stdcall *CUDA_GDG)(int*, int);
typedef int (__stdcall *CUDA_GDA)(int*, int, int);
typedef int (__stdcall *CUDA_GDN)(char*, int, int);
typedef int (__stdcall *CUDA_GDM)(unsigned int*, int);
typedef int (__stdcall *CUDA_GDCC)(int*, int*, int);
typedef int (__stdcall *CUDA_CC)(unsigned int*, unsigned int, unsigned int);
typedef int (__stdcall *CUDA_CD)(unsigned int);
typedef int (__stdcall *CUDA_MA)(unsigned int*, unsigned int);
typedef int (__stdcall *CUDA_MF)(unsigned int);
typedef int (__stdcall *CUDA_MGI)(unsigned int*, unsigned int*);
CUDA_GDC __cuDeviceGetCount = NULL;
CUDA_GDV __cuDriverGetVersion = NULL;
CUDA_GDI __cuInit = NULL;
CUDA_GDG __cuDeviceGet = NULL;
CUDA_GDA __cuDeviceGetAttribute = NULL;
CUDA_GDN __cuDeviceGetName = NULL;
CUDA_GDM __cuDeviceTotalMem = NULL;
CUDA_GDCC __cuDeviceComputeCapability = NULL;
CUDA_CC __cuCtxCreate = NULL;
CUDA_CD __cuCtxDestroy = NULL;
CUDA_MA __cuMemAlloc = NULL;
CUDA_MF __cuMemFree = NULL;
CUDA_MGI __cuMemGetInfo = NULL;
#else
void* cudalib;
int (*__cuInit)(int);
int (*__cuDeviceGetCount)(int*);
int (*__cuDriverGetVersion)(int*);
int (*__cuDeviceGet)(int*, int);
int (*__cuDeviceGetAttribute)(int*, int, int);
int (*__cuDeviceGetName)(char*, int, int);
int (*__cuDeviceTotalMem)(unsigned int*, int);
int (*__cuDeviceComputeCapability)(int*, int*, int);
int (*__cuCtxCreate)(unsigned int*, unsigned int, unsigned int);
int (*__cuCtxDestroy)(unsigned int);
int (*__cuMemAlloc)(unsigned int*, unsigned int);
int (*__cuMemFree)(unsigned int);
int (*__cuMemGetInfo)(unsigned int*, unsigned int*);
#endif
// NVIDIA interfaces are documented here:
// http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/online/index.html
void COPROC_CUDA::get(
COPROCS& coprocs,
bool use_all, // if false, use only those equivalent to most capable
vector<string>& descs,
vector<string>& warnings,
vector<int>& ignore_devs
) {
int count, retval;
char buf[256];
#ifdef _WIN32
HMODULE cudalib = LoadLibrary("nvcuda.dll");
if (!cudalib) {
warnings.push_back("No NVIDIA library found");
return;
}
__cuDeviceGetCount = (CUDA_GDC)GetProcAddress( cudalib, "cuDeviceGetCount" );
__cuDriverGetVersion = (CUDA_GDV)GetProcAddress( cudalib, "cuDriverGetVersion" );
__cuInit = (CUDA_GDI)GetProcAddress( cudalib, "cuInit" );
__cuDeviceGet = (CUDA_GDG)GetProcAddress( cudalib, "cuDeviceGet" );
__cuDeviceGetAttribute = (CUDA_GDA)GetProcAddress( cudalib, "cuDeviceGetAttribute" );
__cuDeviceGetName = (CUDA_GDN)GetProcAddress( cudalib, "cuDeviceGetName" );
__cuDeviceTotalMem = (CUDA_GDM)GetProcAddress( cudalib, "cuDeviceTotalMem" );
__cuDeviceComputeCapability = (CUDA_GDCC)GetProcAddress( cudalib, "cuDeviceComputeCapability" );
__cuCtxCreate = (CUDA_CC)GetProcAddress( cudalib, "cuCtxCreate" );
__cuCtxDestroy = (CUDA_CD)GetProcAddress( cudalib, "cuCtxDestroy" );
__cuMemAlloc = (CUDA_MA)GetProcAddress( cudalib, "cuMemAlloc" );
__cuMemFree = (CUDA_MF)GetProcAddress( cudalib, "cuMemFree" );
__cuMemGetInfo = (CUDA_MGI)GetProcAddress( cudalib, "cuMemGetInfo" );
#ifndef SIM
NvAPI_Status nvapiStatus;
NvDisplayHandle hDisplay;
NV_DISPLAY_DRIVER_VERSION Version;
memset(&Version, 0, sizeof(Version));
Version.version = NV_DISPLAY_DRIVER_VERSION_VER;
NvAPI_Initialize();
for (int i=0; ; i++) {
nvapiStatus = NvAPI_EnumNvidiaDisplayHandle(i, &hDisplay);
if (nvapiStatus != NVAPI_OK) break;
nvapiStatus = NvAPI_GetDisplayDriverVersion(hDisplay, &Version);
if (nvapiStatus == NVAPI_OK) break;
}
#endif
#else
#ifdef __APPLE__
cudalib = dlopen("/usr/local/cuda/lib/libcuda.dylib", RTLD_NOW);
#else
cudalib = dlopen("libcuda.so", RTLD_NOW);
#endif
if (!cudalib) {
warnings.push_back("No NVIDIA library found");
return;
}
__cuDeviceGetCount = (int(*)(int*)) dlsym(cudalib, "cuDeviceGetCount");
__cuDriverGetVersion = (int(*)(int*)) dlsym( cudalib, "cuDriverGetVersion" );
__cuInit = (int(*)(int)) dlsym( cudalib, "cuInit" );
__cuDeviceGet = (int(*)(int*, int)) dlsym( cudalib, "cuDeviceGet" );
__cuDeviceGetAttribute = (int(*)(int*, int, int)) dlsym( cudalib, "cuDeviceGetAttribute" );
__cuDeviceGetName = (int(*)(char*, int, int)) dlsym( cudalib, "cuDeviceGetName" );
__cuDeviceTotalMem = (int(*)(unsigned int*, int)) dlsym( cudalib, "cuDeviceTotalMem" );
__cuDeviceComputeCapability = (int(*)(int*, int*, int)) dlsym( cudalib, "cuDeviceComputeCapability" );
__cuCtxCreate = (int(*)(unsigned int*, unsigned int, unsigned int)) dlsym( cudalib, "cuCtxCreate" );
__cuCtxDestroy = (int(*)(unsigned int)) dlsym( cudalib, "cuCtxDestroy" );
__cuMemAlloc = (int(*)(unsigned int*, unsigned int)) dlsym( cudalib, "cuMemAlloc" );
__cuMemFree = (int(*)(unsigned int)) dlsym( cudalib, "cuMemFree" );
__cuMemGetInfo = (int(*)(unsigned int*, unsigned int*)) dlsym( cudalib, "cuMemGetInfo" );
#endif
if (!__cuDriverGetVersion) {
warnings.push_back("cuDriverGetVersion() missing from NVIDIA library");
return;
}
if (!__cuInit) {
warnings.push_back("cuInit() missing from NVIDIA library");
return;
}
if (!__cuDeviceGetCount) {
warnings.push_back("cuDeviceGetCount() missing from NVIDIA library");
return;
}
if (!__cuDeviceGet) {
warnings.push_back("cuDeviceGet() missing from NVIDIA library");
return;
}
if (!__cuDeviceGetAttribute) {
warnings.push_back("cuDeviceGetAttribute() missing from NVIDIA library");
return;
}
if (!__cuDeviceTotalMem) {
warnings.push_back("cuDeviceTotalMem() missing from NVIDIA library");
return;
}
if (!__cuDeviceComputeCapability) {
warnings.push_back("cuDeviceComputeCapability() missing from NVIDIA library");
return;
}
if (!__cuCtxCreate) {
warnings.push_back("cuCtxCreate() missing from NVIDIA library");
return;
}
if (!__cuCtxDestroy) {
warnings.push_back("cuCtxDestroy() missing from NVIDIA library");
return;
}
if (!__cuMemAlloc) {
warnings.push_back("cuMemAlloc() missing from NVIDIA library");
return;
}
if (!__cuMemFree) {
warnings.push_back("cuMemFree() missing from NVIDIA library");
return;
}
if (!__cuMemGetInfo) {
warnings.push_back("cuMemGetInfo() missing from NVIDIA library");
return;
}
retval = (*__cuInit)(0);
if (retval) {
sprintf(buf, "NVIDIA drivers present but no GPUs found");
warnings.push_back(buf);
return;
}
int cuda_version;
retval = (*__cuDriverGetVersion)(&cuda_version);
if (retval) {
sprintf(buf, "cuDriverGetVersion() returned %d", retval);
warnings.push_back(buf);
return;
}
vector<COPROC_CUDA> gpus;
retval = (*__cuDeviceGetCount)(&count);
if (retval) {
sprintf(buf, "cuDeviceGetCount() returned %d", retval);
warnings.push_back(buf);
return;
}
sprintf(buf, "NVIDIA library reports %d GPU%s", count, (count==1)?"":"s");
warnings.push_back(buf);
int j;
unsigned int i;
COPROC_CUDA cc;
string s;
for (j=0; j<count; j++) {
memset(&cc.prop, 0, sizeof(cc.prop));
int device;
retval = (*__cuDeviceGet)(&device, j);
if (retval) {
sprintf(buf, "cuDeviceGet(%d) returned %d", j, retval);
warnings.push_back(buf);
return;
}
(*__cuDeviceGetName)(cc.prop.name, 256, device);
if (retval) {
sprintf(buf, "cuDeviceGetName(%d) returned %d", j, retval);
warnings.push_back(buf);
return;
}
(*__cuDeviceComputeCapability)(&cc.prop.major, &cc.prop.minor, device);
(*__cuDeviceTotalMem)(&cc.prop.totalGlobalMem, device);
(*__cuDeviceGetAttribute)(&cc.prop.sharedMemPerBlock, CU_DEVICE_ATTRIBUTE_SHARED_MEMORY_PER_BLOCK, device);
(*__cuDeviceGetAttribute)(&cc.prop.regsPerBlock, CU_DEVICE_ATTRIBUTE_REGISTERS_PER_BLOCK, device);
(*__cuDeviceGetAttribute)(&cc.prop.warpSize, CU_DEVICE_ATTRIBUTE_WARP_SIZE, device);
(*__cuDeviceGetAttribute)(&cc.prop.memPitch, CU_DEVICE_ATTRIBUTE_MAX_PITCH, device);
retval = (*__cuDeviceGetAttribute)(&cc.prop.maxThreadsPerBlock, CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_BLOCK, device);
retval = (*__cuDeviceGetAttribute)(&cc.prop.maxThreadsDim[0], CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_X, device);
(*__cuDeviceGetAttribute)(&cc.prop.maxThreadsDim[1], CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Y, device);
(*__cuDeviceGetAttribute)(&cc.prop.maxThreadsDim[2], CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Z, device);
(*__cuDeviceGetAttribute)(&cc.prop.maxGridSize[0], CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_X, device);
(*__cuDeviceGetAttribute)(&cc.prop.maxGridSize[1], CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Y, device);
(*__cuDeviceGetAttribute)(&cc.prop.maxGridSize[2], CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Z, device);
(*__cuDeviceGetAttribute)(&cc.prop.clockRate, CU_DEVICE_ATTRIBUTE_CLOCK_RATE, device);
(*__cuDeviceGetAttribute)(&cc.prop.totalConstMem, CU_DEVICE_ATTRIBUTE_TOTAL_CONSTANT_MEMORY, device);
(*__cuDeviceGetAttribute)(&cc.prop.textureAlignment, CU_DEVICE_ATTRIBUTE_TEXTURE_ALIGNMENT, device);
(*__cuDeviceGetAttribute)(&cc.prop.deviceOverlap, CU_DEVICE_ATTRIBUTE_GPU_OVERLAP, device);
retval = (*__cuDeviceGetAttribute)(&cc.prop.multiProcessorCount, CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT, device);
//retval = (*__cuDeviceGetProperties)(&cc.prop, device);
if (cc.prop.major <= 0) continue; // major == 0 means emulation
if (cc.prop.major > 100) continue; // e.g. 9999 is an error
#if defined(_WIN32) && !defined(SIM)
cc.display_driver_version = Version.drvVersion;
#else
cc.display_driver_version = 0;
#endif
cc.cuda_version = cuda_version;
cc.device_num = j;
gpus.push_back(cc);
}
if (!gpus.size()) {
warnings.push_back("No CUDA-capable NVIDIA GPUs found");
return;
}
// identify the most capable non-ignored instance
//
COPROC_CUDA best;
bool first = true;
for (i=0; i<gpus.size(); i++) {
if (in_vector(gpus[i].device_num, ignore_devs)) continue;
if (first) {
best = gpus[i];
first = false;
} else if (cuda_compare(gpus[i], best, false) > 0) {
best = gpus[i];
}
}
// see which other instances are equivalent,
// and set the "count" and "device_nums" fields
//
best.count = 0;
for (i=0; i<gpus.size(); i++) {
char buf2[256];
gpus[i].description(buf);
if (in_vector(gpus[i].device_num, ignore_devs)) {
sprintf(buf2, "NVIDIA GPU %d (ignored by config): %s", gpus[i].device_num, buf);
} else if (use_all || !cuda_compare(gpus[i], best, true)) {
best.device_nums[best.count] = gpus[i].device_num;
best.count++;
sprintf(buf2, "NVIDIA GPU %d: %s", gpus[i].device_num, buf);
} else {
sprintf(buf2, "NVIDIA GPU %d (not used): %s", gpus[i].device_num, buf);
}
descs.push_back(string(buf2));
}
if (best.count) {
COPROC_CUDA* ccp = new COPROC_CUDA;
*ccp = best;
coprocs.coprocs.push_back(ccp);
}
}
// fake a NVIDIA GPU (for debugging)
//
COPROC_CUDA* fake_cuda(COPROCS& coprocs, double ram, int count) {
COPROC_CUDA* cc = new COPROC_CUDA;
strcpy(cc->type, "CUDA");
cc->count = count;
for (int i=0; i<count; i++) {
cc->device_nums[i] = i;
}
cc->display_driver_version = 18000;
cc->cuda_version = 2020;
strcpy(cc->prop.name, "Fake NVIDIA GPU");
cc->prop.totalGlobalMem = (unsigned int)ram;
cc->prop.sharedMemPerBlock = 100;
cc->prop.regsPerBlock = 8;
cc->prop.warpSize = 10;
cc->prop.memPitch = 10;
cc->prop.maxThreadsPerBlock = 20;
cc->prop.maxThreadsDim[0] = 2;
cc->prop.maxThreadsDim[1] = 2;
cc->prop.maxThreadsDim[2] = 2;
cc->prop.maxGridSize[0] = 10;
cc->prop.maxGridSize[1] = 10;
cc->prop.maxGridSize[2] = 10;
cc->prop.totalConstMem = 10;
cc->prop.major = 1;
cc->prop.minor = 2;
cc->prop.clockRate = 1250000;
cc->prop.textureAlignment = 1000;
cc->prop.multiProcessorCount = 14;
coprocs.coprocs.push_back(cc);
return cc;
}
// See how much RAM is available on each GPU.
// If this fails, set "available_ram_unknown"
//
void COPROC_CUDA::get_available_ram() {
#ifdef MEASURE_AVAILABLE_RAM
int device, i, retval;
unsigned int memfree, memtotal;
unsigned int ctx;
// avoid crash if faked GPU
//
if (!__cuDeviceGet) {
for (i=0; i<count; i++) {
available_ram[i] = available_ram_fake[i];
available_ram_unknown[i] = false;
}
return;
}
for (i=0; i<count; i++) {
int devnum = device_nums[i];
available_ram[i] = 0;
available_ram_unknown[i] = true;
retval = (*__cuDeviceGet)(&device, devnum);
if (retval) {
if (log_flags.coproc_debug) {
msg_printf(0, MSG_INFO,
"[coproc] cuDeviceGet(%d) returned %d", devnum, retval
);
}
continue;
}
retval = (*__cuCtxCreate)(&ctx, 0, device);
if (retval) {
if (log_flags.coproc_debug) {
msg_printf(0, MSG_INFO,
"[coproc] cuCtxCreate(%d) returned %d", devnum, retval
);
}
continue;
}
retval = (*__cuMemGetInfo)(&memfree, &memtotal);
if (retval) {
if (log_flags.coproc_debug) {
msg_printf(0, MSG_INFO,
"[coproc] cuMemGetInfo(%d) returned %d", devnum, retval
);
}
(*__cuCtxDestroy)(ctx);
continue;
}
(*__cuCtxDestroy)(ctx);
available_ram[i] = (double) memfree;
available_ram_unknown[i] = false;
}
#else
for (int i=0; i<count; i++) {
available_ram[i] = prop.totalGlobalMem;
}
#endif
}
// check whether each GPU is running a graphics app (assume yes)
// return true if there's been a change since last time
//
bool COPROC_CUDA::check_running_graphics_app() {
int retval, j;
bool change = false;
for (j=0; j<count; j++) {
bool new_val = true;
int device, kernel_timeout;
retval = (*__cuDeviceGet)(&device, j);
if (!retval) {
retval = (*__cuDeviceGetAttribute)(&kernel_timeout, CU_DEVICE_ATTRIBUTE_KERNEL_EXEC_TIMEOUT, device);
if (!retval && !kernel_timeout) {
new_val = false;
}
}
if (new_val != running_graphics_app[j]) {
change = true;
}
running_graphics_app[j] = new_val;
}
return change;
}
////////////////// ATI STARTS HERE /////////////////
//
// Docs:
// http://developer.amd.com/gpu_assets/Stream_Computing_User_Guide.pdf
// ?? why don't they have HTML docs??
#ifdef _WIN32
typedef int (__stdcall *ATI_ATTRIBS) (CALdeviceattribs *attribs, CALuint ordinal);
typedef int (__stdcall *ATI_CLOSE)(void);
typedef int (__stdcall *ATI_GDC)(CALuint *numDevices);
typedef int (__stdcall *ATI_GDI)(void);
typedef int (__stdcall *ATI_INFO) (CALdeviceinfo *info, CALuint ordinal);
typedef int (__stdcall *ATI_VER) (CALuint *cal_major, CALuint *cal_minor, CALuint *cal_imp);
typedef int (__stdcall *ATI_STATUS) (CALdevicestatus*, CALdevice);
typedef int (__stdcall *ATI_DEVICEOPEN) (CALdevice*, CALuint);
typedef int (__stdcall *ATI_DEVICECLOSE) (CALdevice);
ATI_ATTRIBS __calDeviceGetAttribs = NULL;
ATI_CLOSE __calShutdown = NULL;
ATI_GDC __calDeviceGetCount = NULL;
ATI_GDI __calInit = NULL;
ATI_INFO __calDeviceGetInfo = NULL;
ATI_VER __calGetVersion = NULL;
ATI_STATUS __calDeviceGetStatus = NULL;
ATI_DEVICEOPEN __calDeviceOpen = NULL;
ATI_DEVICECLOSE __calDeviceClose = NULL;
#else
int (*__calInit)();
int (*__calGetVersion)(CALuint*, CALuint*, CALuint*);
int (*__calDeviceGetCount)(CALuint*);
int (*__calDeviceGetAttribs)(CALdeviceattribs*, CALuint);
int (*__calShutdown)();
int (*__calDeviceGetInfo)(CALdeviceinfo*, CALuint);
int (*__calDeviceGetStatus)(CALdevicestatus*, CALdevice);
int (*__calDeviceOpen)(CALdevice*, CALuint);
int (*__calDeviceClose)(CALdevice);
#endif
void COPROC_ATI::get(COPROCS& coprocs,
vector<string>& descs, vector<string>& warnings, vector<int>& ignore_devs
) {
CALuint numDevices, cal_major, cal_minor, cal_imp;
CALdevice device;
CALdeviceinfo info;
CALdeviceattribs attribs;
char buf[256];
bool amdrt_detected = false;
bool atirt_detected = false;
int retval;
attribs.struct_size = sizeof(CALdeviceattribs);
device = 0;
numDevices =0;
#ifdef _WIN32
#if defined _M_X64
const char* atilib_name = "aticalrt64.dll";
const char* amdlib_name = "amdcalrt64.dll";
#else
const char* atilib_name = "aticalrt.dll";
const char* amdlib_name = "amdcalrt.dll";
#endif
HINSTANCE callib = LoadLibrary(atilib_name);
if (callib) {
atirt_detected = true;
} else {
callib = LoadLibrary(amdlib_name);
if (callib) {
amdrt_detected = true;
}
}
if (!callib) {
warnings.push_back("No ATI library found.");
return;
}
__calInit = (ATI_GDI)GetProcAddress(callib, "calInit" );
__calGetVersion = (ATI_VER)GetProcAddress(callib, "calGetVersion" );
__calDeviceGetCount = (ATI_GDC)GetProcAddress(callib, "calDeviceGetCount" );
__calDeviceGetAttribs =(ATI_ATTRIBS)GetProcAddress(callib, "calDeviceGetAttribs" );
__calShutdown = (ATI_CLOSE)GetProcAddress(callib, "calShutdown" );
__calDeviceGetInfo = (ATI_INFO)GetProcAddress(callib, "calDeviceGetInfo" );
__calDeviceGetStatus = (ATI_STATUS)GetProcAddress(callib, "calDeviceGetStatus" );
__calDeviceOpen = (ATI_DEVICEOPEN)GetProcAddress(callib, "calDeviceOpen" );
__calDeviceClose = (ATI_DEVICECLOSE)GetProcAddress(callib, "calDeviceClose" );
#else
void* callib;
callib = dlopen("libaticalrt.so", RTLD_NOW);
if (!callib) {
warnings.push_back("No ATI library found");
return;
}
atirt_detected = true;
__calInit = (int(*)()) dlsym(callib, "calInit");
__calGetVersion = (int(*)(CALuint*, CALuint*, CALuint*)) dlsym(callib, "calGetVersion");
__calDeviceGetCount = (int(*)(CALuint*)) dlsym(callib, "calDeviceGetCount");
__calDeviceGetAttribs = (int(*)(CALdeviceattribs*, CALuint)) dlsym(callib, "calDeviceGetAttribs");
__calShutdown = (int(*)()) dlsym(callib, "calShutdown");
__calDeviceGetInfo = (int(*)(CALdeviceinfo*, CALuint)) dlsym(callib, "calDeviceGetInfo");
__calDeviceGetStatus = (int(*)(CALdevicestatus*, CALdevice)) dlsym(callib, "calDeviceGetStatus");
__calDeviceOpen = (int(*)(CALdevice*, CALuint)) dlsym(callib, "calDeviceOpen");
__calDeviceClose = (int(*)(CALdevice)) dlsym(callib, "calDeviceClose");
#endif
if (!__calInit) {
warnings.push_back("calInit() missing from CAL library");
return;
}
if (!__calGetVersion) {
warnings.push_back("calGetVersion() missing from CAL library");
return;
}
if (!__calDeviceGetCount) {
warnings.push_back("calDeviceGetCount() missing from CAL library");
return;
}
if (!__calDeviceGetAttribs) {
warnings.push_back("calDeviceGetAttribs() missing from CAL library");
return;
}
if (!__calDeviceGetInfo) {
warnings.push_back("calDeviceGetInfo() missing from CAL library");
return;
}
if (!__calDeviceGetStatus) {
warnings.push_back("calDeviceGetStatus() missing from CAL library");
return;
}
if (!__calDeviceOpen) {
warnings.push_back("calDeviceOpen() missing from CAL library");
return;
}
if (!__calDeviceClose) {
warnings.push_back("calDeviceClose() missing from CAL library");
return;
}
retval = (*__calInit)();
if (retval != CAL_RESULT_OK) {
sprintf(buf, "calInit() returned %d", retval);
warnings.push_back(buf);
return;
}
retval = (*__calDeviceGetCount)(&numDevices);
if (retval != CAL_RESULT_OK) {
sprintf(buf, "calDeviceGetCount() returned %d", retval);
warnings.push_back(buf);
return;
}
retval = (*__calGetVersion)(&cal_major, &cal_minor, &cal_imp);
if (retval != CAL_RESULT_OK) {
sprintf(buf, "calGetVersion() returned %d", retval);
warnings.push_back(buf);
return;
}
if (!numDevices) {
warnings.push_back("No usable CAL devices found");
return;
}
COPROC_ATI cc, cc2;
string s, gpu_name;
vector<COPROC_ATI> gpus;
for (CALuint i=0; i<numDevices; i++) {
retval = (*__calDeviceGetInfo)(&info, i);
if (retval != CAL_RESULT_OK) {
sprintf(buf, "calDeviceGetInfo() returned %d", retval);
warnings.push_back(buf);
return;
}
retval = (*__calDeviceGetAttribs)(&attribs, i);
if (retval != CAL_RESULT_OK) {
sprintf(buf, "calDeviceGetAttribs() returned %d", retval);
warnings.push_back(buf);
return;
}
switch ((int)attribs.target) {
case CAL_TARGET_600:
gpu_name="ATI Radeon HD 2900 (RV600)";
break;
case CAL_TARGET_610:
gpu_name="ATI Radeon HD 2300/2400/3200 (RV610)";
attribs.numberOfSIMD=1; // set correct values (reported wrong by driver)
attribs.wavefrontSize=32;
break;
case CAL_TARGET_630:
gpu_name="ATI Radeon HD 2600 (RV630)";
// set correct values (reported wrong by driver)
attribs.numberOfSIMD=3;
attribs.wavefrontSize=32;
break;
case CAL_TARGET_670:
gpu_name="ATI Radeon HD 3800 (RV670)";
break;
case CAL_TARGET_710:
gpu_name="ATI Radeon HD 4350/4550 (R710)";
break;
case CAL_TARGET_730:
gpu_name="ATI Radeon HD 4600 series (R730)";
break;
case CAL_TARGET_7XX:
gpu_name="ATI Radeon (RV700 class)";
break;
case CAL_TARGET_770:
gpu_name="ATI Radeon HD 4700/4800 (RV740/RV770)";
break;
case 8:
gpu_name="ATI Radeon HD5800 series (Cypress)";
break;
case 9:
gpu_name="ATI Radeon HD5700 series (Juniper)";
break;
case 10:
gpu_name="ATI Radeon HD5x00 series (Redwood)";
break;
case 11:
gpu_name="ATI Radeon HD5x00 series (Cedar)";
break;
default:
gpu_name="ATI unknown";
break;
}
cc.attribs = attribs;
cc.info = info;
strcpy(cc.name, gpu_name.c_str());
sprintf(cc.version, "%d.%d.%d", cal_major, cal_minor, cal_imp);
cc.amdrt_detected = amdrt_detected;
cc.atirt_detected = atirt_detected;
cc.device_num = i;
gpus.push_back(cc);
}
// TODO: count only GPUs with as much memory as fastest one,
// same as for NVIDIA
COPROC_ATI best;
bool first = true;
for (unsigned int i=0; i<gpus.size(); i++) {
char buf[256], buf2[256];
gpus[i].description(buf);
if (in_vector(gpus[i].device_num, ignore_devs)) {
sprintf(buf2, "ATI GPU %d (ignored by config): %s", gpus[i].device_num, buf);
} else {
if (first) {
best = gpus[i];
first = false;
} else if (gpus[i].peak_flops() > best.peak_flops()) {
best = gpus[i];
}
sprintf(buf2, "ATI GPU %d: %s", gpus[i].device_num, buf);
}
descs.push_back(buf2);
}
best.count = 0;
for (unsigned int i=0; i<gpus.size(); i++) {
if (in_vector(gpus[i].device_num, ignore_devs)) continue;
best.device_nums[best.count] = i;
best.count++;
}
COPROC_ATI* ccp = new COPROC_ATI;
*ccp = best;
strcpy(ccp->type, "ATI");
coprocs.coprocs.push_back(ccp);
// shut down, otherwise Lenovo won't be able to switch to low-power GPU
//
retval = (*__calShutdown)();
}
COPROC_ATI* fake_ati(COPROCS& coprocs, double ram, int count) {
COPROC_ATI* cc = new COPROC_ATI;
strcpy(cc->type, "ATI");
strcpy(cc->version, "1.4.3");
strcpy(cc->name, "foobar");
cc->count = count;
memset(&cc->attribs, 0, sizeof(cc->attribs));
memset(&cc->info, 0, sizeof(cc->info));
cc->attribs.localRAM = (int)(ram/MEGA);
cc->attribs.numberOfSIMD = 32;
cc->attribs.wavefrontSize = 32;
cc->attribs.engineClock = 50;
for (int i=0; i<count; i++) {
cc->device_nums[i] = i;
}
coprocs.coprocs.push_back(cc);
return cc;
}
void COPROC_ATI::get_available_ram() {
#ifdef MEASURE_AVAILABLE_RAM
CALdevicestatus st;
CALdevice dev;
int i, retval;
st.struct_size = sizeof(CALdevicestatus);
// avoid crash if faked GPU
if (!__calInit) {
for (i=0; i<count; i++) {
available_ram[i] = available_ram_fake[i];
available_ram_unknown[i] = false;
}
return;
}
for (i=0; i<count; i++) {
available_ram[i] = 0;
available_ram_unknown[i] = true;
}
retval = (*__calInit)();
if (retval) {
if (log_flags.coproc_debug) {
msg_printf(0, MSG_INFO,
"[coproc] calInit() returned %d", retval
);
}
return;
}
for (i=0; i<count; i++) {
int devnum = device_nums[i];
retval = (*__calDeviceOpen)(&dev, devnum);
if (retval) {
if (log_flags.coproc_debug) {
msg_printf(0, MSG_INFO,
"[coproc] calDeviceOpen(%d) returned %d", devnum, retval
);
}
continue;
}
retval = (*__calDeviceGetStatus)(&st, dev);
if (retval) {
if (log_flags.coproc_debug) {
msg_printf(0, MSG_INFO,
"[coproc] calDeviceGetStatus(%d) returned %d",
devnum, retval
);
}
(*__calDeviceClose)(dev);
continue;
}
available_ram[i] = st.availLocalRAM*MEGA;
available_ram_unknown[i] = false;
(*__calDeviceClose)(dev);
}
(*__calShutdown)();
#else
for (int i=0; i<count; i++) {
available_ram[i] = attribs.localRAM*MEGA;
}
#endif
}