2006-02-08 21:05:51 +00:00
|
|
|
// Berkeley Open Infrastructure for Network Computing
|
|
|
|
// http://boinc.berkeley.edu
|
|
|
|
// Copyright (C) 2005 University of California
|
|
|
|
//
|
|
|
|
// This is free software; you can redistribute it and/or
|
|
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
|
|
// License as published by the Free Software Foundation;
|
|
|
|
// either version 2.1 of the License, or (at your option) any later version.
|
|
|
|
//
|
|
|
|
// This software is distributed in the hope that it will be useful,
|
|
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
|
|
// See the GNU Lesser General Public License for more details.
|
|
|
|
//
|
|
|
|
// To view the GNU Lesser General Public License visit
|
|
|
|
// http://www.gnu.org/copyleft/lesser.html
|
|
|
|
// or write to the Free Software Foundation, Inc.,
|
|
|
|
// 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
|
|
|
|
|
|
#include "client_msgs.h"
|
|
|
|
#include "client_state.h"
|
|
|
|
|
|
|
|
using std::vector;
|
|
|
|
|
|
|
|
#define MAX_DEBT (86400)
|
|
|
|
// maximum project debt
|
|
|
|
|
|
|
|
#define CPU_PESSIMISM_FACTOR 0.9
|
|
|
|
// assume actual CPU utilization will be this multiple
|
|
|
|
// of what we've actually measured recently
|
|
|
|
|
|
|
|
// Choose a "best" runnable result for each project
|
|
|
|
//
|
|
|
|
// Values are returned in project->next_runnable_result
|
|
|
|
// (skip projects for which this is already non-NULL)
|
|
|
|
//
|
|
|
|
// Don't choose results with already_selected == true;
|
|
|
|
// mark chosen results as already_selected.
|
|
|
|
//
|
|
|
|
// The preference order:
|
|
|
|
// 1. results with active tasks that are running
|
|
|
|
// 2. results with active tasks that are preempted (but have a process)
|
|
|
|
// 3. results with active tasks that have no process
|
|
|
|
// 4. results with no active task
|
|
|
|
//
|
|
|
|
void CLIENT_STATE::assign_results_to_projects() {
|
|
|
|
unsigned int i;
|
|
|
|
RESULT* rp;
|
|
|
|
PROJECT* project;
|
|
|
|
|
|
|
|
// scan results with an ACTIVE_TASK
|
|
|
|
//
|
|
|
|
for (i=0; i<active_tasks.active_tasks.size(); ++i) {
|
|
|
|
ACTIVE_TASK *atp = active_tasks.active_tasks[i];
|
|
|
|
rp = atp->result;
|
|
|
|
if (rp->already_selected) continue;
|
|
|
|
if (!rp->runnable()) continue;
|
|
|
|
project = rp->project;
|
|
|
|
if (!project->next_runnable_result) {
|
|
|
|
project->next_runnable_result = rp;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
// see if this task is "better" than the one currently
|
|
|
|
// selected for this project
|
|
|
|
//
|
|
|
|
ACTIVE_TASK *next_atp = lookup_active_task_by_result(
|
|
|
|
project->next_runnable_result
|
|
|
|
);
|
|
|
|
assert(next_atp != NULL);
|
|
|
|
|
|
|
|
if ((next_atp->task_state == PROCESS_UNINITIALIZED && atp->process_exists())
|
|
|
|
|| (next_atp->scheduler_state == CPU_SCHED_PREEMPTED
|
|
|
|
&& atp->scheduler_state == CPU_SCHED_SCHEDULED)
|
|
|
|
) {
|
|
|
|
project->next_runnable_result = atp->result;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Now consider results that don't have an active task
|
|
|
|
//
|
|
|
|
for (i=0; i<results.size(); i++) {
|
|
|
|
rp = results[i];
|
|
|
|
if (rp->already_selected) continue;
|
|
|
|
if (lookup_active_task_by_result(rp)) continue;
|
|
|
|
if (!rp->runnable()) continue;
|
|
|
|
|
|
|
|
project = rp->project;
|
|
|
|
if (project->next_runnable_result) continue;
|
|
|
|
|
|
|
|
// don't start results if > 2 uploads in progress
|
|
|
|
//
|
|
|
|
if (project->nactive_uploads > 2) continue;
|
|
|
|
|
|
|
|
project->next_runnable_result = rp;
|
|
|
|
}
|
|
|
|
|
|
|
|
// mark selected results, so CPU scheduler won't try to consider
|
|
|
|
// a result more than once
|
|
|
|
//
|
|
|
|
for (i=0; i<projects.size(); i++) {
|
|
|
|
project = projects[i];
|
|
|
|
if (project->next_runnable_result) {
|
|
|
|
project->next_runnable_result->already_selected = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Schedule an active task for the project with the largest anticipated debt
|
|
|
|
// among those that have a runnable result.
|
|
|
|
// Return true iff a task was scheduled.
|
|
|
|
//
|
|
|
|
bool CLIENT_STATE::schedule_largest_debt_project(double expected_pay_off) {
|
|
|
|
PROJECT *best_project = NULL;
|
|
|
|
double best_debt = -MAX_DEBT;
|
|
|
|
bool first = true;
|
|
|
|
unsigned int i;
|
|
|
|
|
|
|
|
for (i=0; i<projects.size(); i++) {
|
|
|
|
PROJECT* p = projects[i];
|
|
|
|
if (!p->next_runnable_result) continue;
|
|
|
|
if (p->non_cpu_intensive) continue;
|
|
|
|
if (first || p->anticipated_debt > best_debt) {
|
|
|
|
first = false;
|
|
|
|
best_project = p;
|
|
|
|
best_debt = p->anticipated_debt;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (!best_project) return false;
|
|
|
|
|
|
|
|
schedule_result(best_project->next_runnable_result);
|
|
|
|
best_project->anticipated_debt -= expected_pay_off;
|
|
|
|
best_project->next_runnable_result = 0;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Schedule the active task with the earliest deadline
|
|
|
|
// Return true iff a task was scheduled.
|
|
|
|
//
|
|
|
|
bool CLIENT_STATE::schedule_earliest_deadline_result() {
|
|
|
|
PROJECT *best_project = NULL;
|
|
|
|
RESULT *best_result = NULL;
|
|
|
|
double earliest_deadline=0;
|
|
|
|
bool first = true;
|
|
|
|
unsigned int i;
|
|
|
|
|
|
|
|
for (i=0; i < results.size(); ++i) {
|
|
|
|
RESULT *rp = results[i];
|
|
|
|
if (!rp->runnable()) continue;
|
|
|
|
if (rp->project->non_cpu_intensive) continue;
|
|
|
|
if (rp->already_selected) continue;
|
|
|
|
if (first || rp->report_deadline < earliest_deadline) {
|
|
|
|
first = false;
|
|
|
|
best_project = rp->project;
|
|
|
|
best_result = rp;
|
|
|
|
earliest_deadline = rp->report_deadline;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (!best_result) return false;
|
|
|
|
|
|
|
|
// msg_printf(0, MSG_INFO, "earliest deadline: %f %s", earliest_deadline, best_result->name);
|
|
|
|
schedule_result(best_result);
|
|
|
|
best_result->already_selected = true;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// adjust project debts (short, long-term)
|
|
|
|
// NOTE: currently there's the assumption that the only
|
|
|
|
// non-final call is from schedule_cpus(),
|
|
|
|
// since that's where total_wall_cpu_time_this_period etc. are zeroed.
|
|
|
|
//
|
|
|
|
void CLIENT_STATE::adjust_debts() {
|
|
|
|
unsigned int i;
|
|
|
|
double total_long_term_debt = 0;
|
|
|
|
double total_short_term_debt = 0;
|
|
|
|
double prrs, rrs;
|
|
|
|
int nprojects=0, nrprojects=0;
|
|
|
|
PROJECT *p;
|
|
|
|
double share_frac;
|
|
|
|
double wall_cpu_time = gstate.now - cpu_sched_last_time;
|
|
|
|
|
|
|
|
SCOPE_MSG_LOG scope_messages(log_messages, CLIENT_MSG_LOG::DEBUG_TASK);
|
|
|
|
|
|
|
|
// Total up total and per-project "wall CPU" since last CPU reschedule.
|
|
|
|
// "Wall CPU" is the wall time during which a task was
|
|
|
|
// runnable (at the OS level).
|
|
|
|
//
|
|
|
|
// We use wall CPU for debt calculation
|
|
|
|
// (instead of reported actual CPU) for two reasons:
|
|
|
|
// 1) the process might have paged a lot, so the actual CPU
|
|
|
|
// may be a lot less than wall CPU
|
|
|
|
// 2) BOINC relies on apps to report their CPU time.
|
|
|
|
// Sometimes there are bugs and apps report zero CPU.
|
|
|
|
// It's safer not to trust them.
|
|
|
|
//
|
|
|
|
for (i=0; i<active_tasks.active_tasks.size(); i++) {
|
|
|
|
ACTIVE_TASK* atp = active_tasks.active_tasks[i];
|
|
|
|
if (atp->scheduler_state != CPU_SCHED_SCHEDULED) continue;
|
|
|
|
if (atp->non_cpu_intensive) continue;
|
|
|
|
|
|
|
|
atp->result->project->wall_cpu_time_this_period += wall_cpu_time;
|
|
|
|
total_wall_cpu_time_this_period += wall_cpu_time;
|
|
|
|
total_cpu_time_this_period += atp->current_cpu_time - atp->cpu_time_at_last_sched;
|
|
|
|
}
|
|
|
|
|
|
|
|
time_stats.update_cpu_efficiency(
|
|
|
|
total_wall_cpu_time_this_period, total_cpu_time_this_period
|
|
|
|
);
|
|
|
|
|
|
|
|
rrs = runnable_resource_share();
|
|
|
|
prrs = potentially_runnable_resource_share();
|
|
|
|
|
|
|
|
for (i=0; i<projects.size(); i++) {
|
|
|
|
p = projects[i];
|
|
|
|
// potentially_runnable() can be false right after a result completes,
|
|
|
|
// but we still need to update its LTD.
|
|
|
|
// In this case its wall_cpu_time_this_period will be nonzero.
|
|
|
|
//
|
|
|
|
if (!(p->potentially_runnable()) && p->wall_cpu_time_this_period)
|
|
|
|
prrs += p->resource_share;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i=0; i<projects.size(); i++) {
|
|
|
|
p = projects[i];
|
|
|
|
if (p->non_cpu_intensive) continue;
|
|
|
|
nprojects++;
|
|
|
|
|
|
|
|
// adjust long-term debts
|
|
|
|
//
|
|
|
|
if (p->potentially_runnable() || p->wall_cpu_time_this_period) {
|
|
|
|
share_frac = p->resource_share/prrs;
|
|
|
|
p->long_term_debt += share_frac*total_wall_cpu_time_this_period
|
|
|
|
- p->wall_cpu_time_this_period;
|
|
|
|
}
|
|
|
|
total_long_term_debt += p->long_term_debt;
|
|
|
|
|
|
|
|
// adjust short term debts
|
|
|
|
//
|
|
|
|
if (p->runnable()) {
|
|
|
|
nrprojects++;
|
|
|
|
share_frac = p->resource_share/rrs;
|
|
|
|
p->short_term_debt += share_frac*total_wall_cpu_time_this_period
|
|
|
|
- p->wall_cpu_time_this_period
|
|
|
|
;
|
|
|
|
total_short_term_debt += p->short_term_debt;
|
|
|
|
} else {
|
|
|
|
p->short_term_debt = 0;
|
|
|
|
p->anticipated_debt = 0;
|
|
|
|
}
|
|
|
|
scope_messages.printf(
|
|
|
|
"CLIENT_STATE::adjust_debts(): project %s: short-term debt %f\n",
|
|
|
|
p->project_name, p->short_term_debt
|
|
|
|
);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (nprojects==0) return;
|
|
|
|
|
|
|
|
// long-term debt:
|
|
|
|
// normalize so mean is zero,
|
|
|
|
// short-term debt:
|
|
|
|
// normalize so mean is zero, and limit abs value at MAX_DEBT
|
|
|
|
//
|
|
|
|
double avg_long_term_debt = total_long_term_debt / nprojects;
|
|
|
|
double avg_short_term_debt = 0;
|
|
|
|
if (nrprojects) {
|
|
|
|
avg_short_term_debt = total_short_term_debt / nrprojects;
|
|
|
|
}
|
|
|
|
for (i=0; i<projects.size(); i++) {
|
|
|
|
p = projects[i];
|
|
|
|
if (p->non_cpu_intensive) continue;
|
|
|
|
if (p->runnable()) {
|
|
|
|
p->short_term_debt -= avg_short_term_debt;
|
|
|
|
if (p->short_term_debt > MAX_DEBT) {
|
|
|
|
p->short_term_debt = MAX_DEBT;
|
|
|
|
}
|
|
|
|
if (p->short_term_debt < -MAX_DEBT) {
|
|
|
|
p->short_term_debt = -MAX_DEBT;
|
|
|
|
}
|
|
|
|
p->anticipated_debt = p->short_term_debt;
|
|
|
|
//msg_printf(p, MSG_INFO, "debt %f", p->short_term_debt);
|
|
|
|
}
|
|
|
|
|
|
|
|
p->long_term_debt -= avg_long_term_debt;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Schedule active tasks to be run and preempted.
|
|
|
|
// This is called in the do_something() loop
|
|
|
|
//
|
|
|
|
bool CLIENT_STATE::schedule_cpus() {
|
|
|
|
double expected_pay_off;
|
|
|
|
ACTIVE_TASK *atp;
|
|
|
|
PROJECT *p;
|
|
|
|
int j;
|
|
|
|
double elapsed_time;
|
|
|
|
unsigned int i;
|
|
|
|
|
|
|
|
if (projects.size() == 0) return false;
|
|
|
|
if (results.size() == 0) return false;
|
|
|
|
|
|
|
|
// Reschedule every cpu_sched_period seconds,
|
|
|
|
// or if must_schedule_cpus is set
|
|
|
|
// (meaning a new result is available, or a CPU has been freed).
|
|
|
|
//
|
|
|
|
|
|
|
|
elapsed_time = gstate.now - cpu_sched_last_time;
|
|
|
|
if (must_schedule_cpus) {
|
|
|
|
must_schedule_cpus = false;
|
|
|
|
} else {
|
|
|
|
if (elapsed_time < (global_prefs.cpu_scheduling_period_minutes*60)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// mark file xfer results as completed;
|
|
|
|
// TODO: why do this here??
|
|
|
|
//
|
|
|
|
handle_file_xfer_apps();
|
|
|
|
|
|
|
|
// clear temporary variables
|
|
|
|
//
|
|
|
|
for (i=0; i<projects.size(); i++) {
|
|
|
|
projects[i]->next_runnable_result = NULL;
|
|
|
|
projects[i]->nactive_uploads = 0;
|
|
|
|
}
|
|
|
|
for (i=0; i<results.size(); i++) {
|
|
|
|
results[i]->already_selected = false;
|
|
|
|
}
|
|
|
|
for (i=0; i<file_xfers->file_xfers.size(); i++) {
|
|
|
|
FILE_XFER* fxp = file_xfers->file_xfers[i];
|
|
|
|
if (fxp->is_upload) {
|
|
|
|
fxp->fip->project->nactive_uploads++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
set_scheduler_mode();
|
|
|
|
adjust_debts();
|
|
|
|
|
|
|
|
// mark active tasks as preempted
|
|
|
|
// MUST DO THIS AFTER adjust_debts()
|
|
|
|
//
|
|
|
|
for (i=0; i<active_tasks.active_tasks.size(); i++) {
|
|
|
|
atp = active_tasks.active_tasks[i];
|
|
|
|
if (atp->non_cpu_intensive) {
|
|
|
|
atp->next_scheduler_state = CPU_SCHED_SCHEDULED;
|
|
|
|
} else {
|
|
|
|
atp->next_scheduler_state = CPU_SCHED_PREEMPTED;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
expected_pay_off = total_wall_cpu_time_this_period / ncpus;
|
|
|
|
for (j=0; j<ncpus; j++) {
|
|
|
|
if (cpu_earliest_deadline_first) {
|
|
|
|
if (!schedule_earliest_deadline_result()) break;
|
|
|
|
} else {
|
|
|
|
assign_results_to_projects();
|
|
|
|
if (!schedule_largest_debt_project(expected_pay_off)) break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// schedule new non CPU intensive tasks
|
|
|
|
//
|
|
|
|
for (i=0; i<results.size(); i++) {
|
|
|
|
RESULT* rp = results[i];
|
|
|
|
if (rp->project->non_cpu_intensive && rp->runnable()) {
|
|
|
|
schedule_result(rp);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
enforce_schedule();
|
|
|
|
|
|
|
|
// reset work accounting
|
|
|
|
// do this at the end of schedule_cpus() because
|
|
|
|
// wall_cpu_time_this_period's can change as apps finish
|
|
|
|
//
|
|
|
|
for (i=0; i<projects.size(); i++) {
|
|
|
|
p = projects[i];
|
|
|
|
p->wall_cpu_time_this_period = 0;
|
|
|
|
}
|
|
|
|
total_wall_cpu_time_this_period = 0;
|
|
|
|
total_cpu_time_this_period = 0;
|
|
|
|
cpu_sched_last_time = gstate.now;
|
|
|
|
|
|
|
|
set_client_state_dirty("schedule_cpus");
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// preempt, start, and resume tasks
|
|
|
|
//
|
|
|
|
void CLIENT_STATE::enforce_schedule() {
|
|
|
|
double vm_limit = (global_prefs.vm_max_used_pct/100.)*host_info.m_swap;
|
|
|
|
unsigned int i;
|
|
|
|
ACTIVE_TASK *atp;
|
|
|
|
int retval;
|
|
|
|
|
|
|
|
for (i=0; i<active_tasks.active_tasks.size(); i++) {
|
|
|
|
atp = active_tasks.active_tasks[i];
|
|
|
|
if (atp->scheduler_state == CPU_SCHED_SCHEDULED
|
|
|
|
&& atp->next_scheduler_state == CPU_SCHED_PREEMPTED
|
|
|
|
) {
|
|
|
|
bool preempt_by_quit = !global_prefs.leave_apps_in_memory;
|
|
|
|
preempt_by_quit |= active_tasks.vm_limit_exceeded(vm_limit);
|
|
|
|
|
|
|
|
atp->preempt(preempt_by_quit);
|
|
|
|
} else if (atp->scheduler_state != CPU_SCHED_SCHEDULED
|
|
|
|
&& atp->next_scheduler_state == CPU_SCHED_SCHEDULED
|
|
|
|
) {
|
|
|
|
retval = atp->resume_or_start();
|
|
|
|
if (retval) {
|
|
|
|
report_result_error(
|
|
|
|
*(atp->result), "Couldn't start or resume: %d", retval
|
|
|
|
);
|
|
|
|
|
|
|
|
request_schedule_cpus("start failed");
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
atp->scheduler_state = CPU_SCHED_SCHEDULED;
|
|
|
|
app_started = gstate.now;
|
|
|
|
}
|
|
|
|
atp->cpu_time_at_last_sched = atp->current_cpu_time;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2006-02-11 03:00:37 +00:00
|
|
|
// return true if we don't have enough runnable tasks to keep all CPUs busy
|
|
|
|
//
|
|
|
|
bool CLIENT_STATE::no_work_for_a_cpu() {
|
|
|
|
unsigned int i;
|
|
|
|
int count = 0;
|
|
|
|
|
|
|
|
for (i=0; i< results.size(); i++){
|
|
|
|
RESULT* rp = results[i];
|
|
|
|
if (!rp->runnable_soon()) continue;
|
|
|
|
if (rp->project->non_cpu_intensive) continue;
|
|
|
|
count++;
|
|
|
|
}
|
|
|
|
return ncpus > count;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Set the project's rrsim_proc_rate:
|
|
|
|
// the fraction of each CPU that it will get in round-robin mode.
|
|
|
|
// Precondition: the project's "active" array is populated
|
2006-02-08 21:05:51 +00:00
|
|
|
//
|
|
|
|
void PROJECT::set_rrsim_proc_rate(double per_cpu_proc_rate, double rrs) {
|
|
|
|
int nactive = (int)active.size();
|
|
|
|
if (nactive == 0) return;
|
|
|
|
double x;
|
2006-02-11 03:00:37 +00:00
|
|
|
|
2006-02-08 21:05:51 +00:00
|
|
|
if (rrs) {
|
|
|
|
x = resource_share/rrs;
|
|
|
|
} else {
|
2006-02-11 03:00:37 +00:00
|
|
|
x = 1; // pathological case; maybe should be 1/# runnable projects
|
2006-02-08 21:05:51 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// if this project has fewer active results than CPUs,
|
|
|
|
// scale up its share to reflect this
|
|
|
|
//
|
|
|
|
if (nactive < gstate.ncpus) {
|
|
|
|
x *= ((double)gstate.ncpus)/nactive;
|
|
|
|
}
|
|
|
|
|
2006-02-11 03:00:37 +00:00
|
|
|
// But its rate on a given CPU can't exceed 1
|
2006-02-08 21:05:51 +00:00
|
|
|
//
|
|
|
|
if (x>1) {
|
|
|
|
x = 1;
|
|
|
|
}
|
|
|
|
rrsim_proc_rate = x*per_cpu_proc_rate*CPU_PESSIMISM_FACTOR;
|
|
|
|
}
|
|
|
|
|
2006-02-11 03:00:37 +00:00
|
|
|
// return true if round-robin scheduling will miss a deadline.
|
|
|
|
// per_cpu_proc_rate is the expected number of CPU seconds per wall second
|
|
|
|
// on each CPU; rrs is the resource share of runnable projects
|
2006-02-08 21:05:51 +00:00
|
|
|
//
|
|
|
|
bool CLIENT_STATE::rr_misses_deadline(double per_cpu_proc_rate, double rrs) {
|
|
|
|
PROJECT* p, *pbest;
|
|
|
|
RESULT* rp, *rpbest;
|
|
|
|
vector<RESULT*> active;
|
|
|
|
unsigned int i;
|
|
|
|
double x;
|
|
|
|
vector<RESULT*>::iterator it;
|
|
|
|
|
|
|
|
SCOPE_MSG_LOG scope_messages(log_messages, CLIENT_MSG_LOG::DEBUG_SCHED_CPU);
|
|
|
|
|
|
|
|
// Initilize the "active" and "pending" lists for each project.
|
|
|
|
// These keep track of that project's results
|
|
|
|
//
|
|
|
|
for (i=0; i<projects.size(); i++) {
|
|
|
|
p = projects[i];
|
|
|
|
p->active.clear();
|
|
|
|
p->pending.clear();
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i=0; i<results.size(); i++) {
|
|
|
|
rp = results[i];
|
|
|
|
if (rp->aborted_via_gui) continue;
|
|
|
|
if (!rp->runnable()) continue;
|
|
|
|
if (rp->aborted_via_gui) continue;
|
|
|
|
if (rp->project->non_cpu_intensive) continue;
|
|
|
|
rp->rrsim_cpu_left = rp->estimated_cpu_time_remaining();
|
|
|
|
p = rp->project;
|
|
|
|
if (p->active.size() < (unsigned int)ncpus) {
|
|
|
|
active.push_back(rp);
|
|
|
|
p->active.push_back(rp);
|
|
|
|
} else {
|
|
|
|
p->pending.push_back(rp);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i=0; i<projects.size(); i++) {
|
|
|
|
p = projects[i];
|
|
|
|
p->set_rrsim_proc_rate(per_cpu_proc_rate, rrs);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Simulation loop. Keep going until work done
|
|
|
|
//
|
|
|
|
double sim_now = now;
|
|
|
|
while (active.size()) {
|
|
|
|
|
|
|
|
// compute finish times and see which result finishes first
|
|
|
|
//
|
|
|
|
rpbest = NULL;
|
|
|
|
for (i=0; i<active.size(); i++) {
|
|
|
|
rp = active[i];
|
|
|
|
p = rp->project;
|
|
|
|
rp->rrsim_finish_delay = rp->rrsim_cpu_left/p->rrsim_proc_rate;
|
|
|
|
if (!rpbest || rp->rrsim_finish_delay < rpbest->rrsim_finish_delay) {
|
|
|
|
rpbest = rp;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// "rpbest" is first result to finish. Does it miss its deadline?
|
|
|
|
//
|
|
|
|
double diff = sim_now + rpbest->rrsim_finish_delay - rpbest->report_deadline;
|
|
|
|
if (diff > 0) {
|
|
|
|
scope_messages.printf(
|
|
|
|
"rr_sim: result %s misses deadline by %f\n", rpbest->name, diff
|
|
|
|
);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// remove *rpbest from active set,
|
|
|
|
// and adjust CPU time left for other results
|
|
|
|
//
|
|
|
|
it = active.begin();
|
|
|
|
while (it != active.end()) {
|
|
|
|
rp = *it;
|
|
|
|
if (rp == rpbest) {
|
|
|
|
it = active.erase(it);
|
|
|
|
} else {
|
|
|
|
x = rp->project->rrsim_proc_rate*rpbest->rrsim_finish_delay;
|
|
|
|
rp->rrsim_cpu_left -= x;
|
|
|
|
it++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
pbest = rpbest->project;
|
|
|
|
|
|
|
|
// remove *rpbest from its project's active set
|
|
|
|
//
|
|
|
|
it = pbest->active.begin();
|
|
|
|
while (it != pbest->active.end()) {
|
|
|
|
rp = *it;
|
|
|
|
if (rp == rpbest) {
|
|
|
|
it = pbest->active.erase(it);
|
|
|
|
} else {
|
|
|
|
it++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// If project has more results, add one to active set.
|
|
|
|
//
|
|
|
|
if (pbest->pending.size()) {
|
|
|
|
rp = pbest->pending[0];
|
|
|
|
pbest->pending.erase(pbest->pending.begin());
|
|
|
|
active.push_back(rp);
|
|
|
|
pbest->active.push_back(rp);
|
|
|
|
}
|
|
|
|
|
|
|
|
// If all work done for a project, subtract that project's share
|
|
|
|
// and recompute processing rates
|
|
|
|
//
|
|
|
|
if (pbest->active.size() == 0) {
|
|
|
|
rrs -= pbest->resource_share;
|
|
|
|
for (i=0; i<projects.size(); i++) {
|
|
|
|
p = projects[i];
|
|
|
|
p->set_rrsim_proc_rate(per_cpu_proc_rate, rrs);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
sim_now += rpbest->rrsim_finish_delay;
|
|
|
|
}
|
|
|
|
scope_messages.printf( "rr_sim: deadlines met\n");
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Decide on CPU sched policy
|
|
|
|
// Namely, set the variable cpu_earliest_deadline_first
|
|
|
|
// and print a message if we're changing its value
|
|
|
|
//
|
|
|
|
void CLIENT_STATE::set_scheduler_mode() {
|
|
|
|
bool use_earliest_deadline_first = false;
|
2006-02-11 03:00:37 +00:00
|
|
|
double per_cpu_proc_rate = avg_proc_rate()/ncpus;
|
|
|
|
// how many CPU seconds per wall second we get on each CPU,
|
|
|
|
// taking into account on_frac, active_frac, and cpu_efficiency
|
|
|
|
|
2006-02-08 21:05:51 +00:00
|
|
|
double rrs = runnable_resource_share();
|
|
|
|
|
|
|
|
if (rr_misses_deadline(per_cpu_proc_rate, rrs)) {
|
|
|
|
// if round robin would miss a deadline, use EDF
|
|
|
|
//
|
|
|
|
use_earliest_deadline_first = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
if (cpu_earliest_deadline_first && !use_earliest_deadline_first) {
|
|
|
|
msg_printf(NULL, MSG_INFO,
|
|
|
|
"Resuming round-robin CPU scheduling."
|
|
|
|
);
|
|
|
|
}
|
|
|
|
if (!cpu_earliest_deadline_first && use_earliest_deadline_first) {
|
|
|
|
msg_printf(NULL, MSG_INFO,
|
|
|
|
"Using earliest-deadline-first scheduling because computer is overcommitted."
|
|
|
|
);
|
|
|
|
}
|
|
|
|
cpu_earliest_deadline_first = use_earliest_deadline_first;
|
|
|
|
}
|
|
|
|
|