boinc/sched/sched_score.cpp

316 lines
9.5 KiB
C++
Raw Normal View History

// This file is part of BOINC.
// http://boinc.berkeley.edu
// Copyright (C) 2008 University of California
//
// BOINC is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License
// as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// BOINC is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with BOINC. If not, see <http://www.gnu.org/licenses/>.
// Matchmaker scheduling code
#include "boinc_db.h"
#include "error_numbers.h"
#include "str_util.h"
#include "main.h"
#include "sched_config.h"
#include "sched_hr.h"
#include "sched_msgs.h"
#include "sched_shmem.h"
#include "sched_send.h"
#include "sched_version.h"
#include "server_types.h"
#include "sched_score.h"
// reread result from DB, make sure it's still unsent
// TODO: from here to add_result_to_reply()
// (which updates the DB record) should be a transaction
//
int read_sendable_result(DB_RESULT& result) {
int retval = result.lookup_id(result.id);
if (retval) {
log_messages.printf(MSG_CRITICAL,
"[RESULT#%d] result.lookup_id() failed %d\n",
result.id, retval
);
return ERR_NOT_FOUND;
}
if (result.server_state != RESULT_SERVER_STATE_UNSENT) {
log_messages.printf(MSG_NORMAL,
"[RESULT#%d] expected to be unsent; instead, state is %d\n",
result.id, result.server_state
);
return ERR_BAD_RESULT_STATE;
}
return 0;
}
bool wu_is_infeasible_slow(
WU_RESULT& wu_result, SCHEDULER_REQUEST& sreq, SCHEDULER_REPLY& reply
) {
char buf[256];
int retval;
int n;
DB_RESULT result;
// Don't send if we've already sent a result of this WU to this user.
//
if (config.one_result_per_user_per_wu) {
sprintf(buf,
"where workunitid=%d and userid=%d",
wu_result.workunit.id, g_reply->user.id
);
retval = result.count(n, buf);
if (retval) {
log_messages.printf(MSG_CRITICAL,
"send_work: can't get result count (%d)\n", retval
);
return true;
} else {
if (n>0) {
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] send_work: user %d already has %d result(s) for WU %d\n",
g_reply->user.id, n, wu_result.workunit.id
);
}
return true;
}
}
} else if (config.one_result_per_host_per_wu) {
// Don't send if we've already sent a result
// of this WU to this host.
// We only have to check this
// if we don't send one result per user.
//
sprintf(buf,
"where workunitid=%d and hostid=%d",
wu_result.workunit.id, g_reply->host.id
);
retval = result.count(n, buf);
if (retval) {
log_messages.printf(MSG_CRITICAL,
"send_work: can't get result count (%d)\n", retval
);
return true;
} else {
if (n>0) {
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] send_work: host %d already has %d result(s) for WU %d\n",
g_reply->host.id, n, wu_result.workunit.id
);
}
return true;
}
}
}
APP* app = ssp->lookup_app(wu_result.workunit.appid);
WORKUNIT wu = wu_result.workunit;
if (app_hr_type(*app)) {
if (already_sent_to_different_platform_careful(wu, *app)) {
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] [HOST#%d] [WU#%d %s] WU is infeasible (assigned to different platform)\n",
g_reply->host.id, wu.id, wu.name
);
}
// Mark the workunit as infeasible.
// This ensures that jobs already assigned to a platform
// are processed first.
//
wu_result.infeasible_count++;
return true;
}
}
return false;
}
double JOB_SET::lowest_score() {
if (jobs.empty()) return 0;
return jobs.back().score;
}
// add the given job, and remove lowest-score jobs that
// - are in excess of work request
// - are in excess of per-request or per-day limits
// - cause the disk limit to be exceeded
//
void JOB_SET::add_job(JOB& job) {
while (!jobs.empty()) {
JOB& worst_job = jobs.back();
if (est_time + job.est_time - worst_job.est_time > work_req) {
est_time -= worst_job.est_time;
disk_usage -= worst_job.disk_usage;
jobs.pop_back();
ssp->wu_results[worst_job.index].state = WR_STATE_PRESENT;
} else {
break;
}
}
while (!jobs.empty()) {
JOB& worst_job = jobs.back();
if (disk_usage + job.disk_usage > disk_limit) {
est_time -= worst_job.est_time;
disk_usage -= worst_job.disk_usage;
jobs.pop_back();
ssp->wu_results[worst_job.index].state = WR_STATE_PRESENT;
} else {
break;
}
}
if (jobs.size() == max_jobs) {
JOB& worst_job = jobs.back();
jobs.pop_back();
ssp->wu_results[worst_job.index].state = WR_STATE_PRESENT;
}
std::list<JOB>::iterator i = jobs.begin();
while (i != jobs.end()) {
if (i->score < job.score) {
jobs.insert(i, job);
break;
}
i++;
}
if (i == jobs.end()) {
jobs.push_back(job);
}
est_time += job.est_time;
disk_usage += job.disk_usage;
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] added job to set. est_time %.2f disk_usage %.2fGB\n",
est_time, disk_usage/GIGA
);
}
}
// return the disk usage of jobs above the given score
//
double JOB_SET::higher_score_disk_usage(double v) {
double sum = 0;
std::list<JOB>::iterator i = jobs.begin();
while (i != jobs.end()) {
if (i->score < v) break;
sum += i->disk_usage;
i++;
}
return sum;
}
void JOB_SET::send() {
WORKUNIT wu;
DB_RESULT result;
int retval;
std::list<JOB>::iterator i = jobs.begin();
while (i != jobs.end()) {
JOB& job = *(i++);
WU_RESULT wu_result = ssp->wu_results[job.index];
ssp->wu_results[job.index].state = WR_STATE_EMPTY;
wu = wu_result.workunit;
result.id = wu_result.resultid;
retval = read_sendable_result(result);
if (!retval) {
add_result_to_reply(result, wu, job.bavp, false);
}
}
}
void send_work_matchmaker() {
int i, slots_locked=0, slots_nonempty=0;
JOB_SET jobs;
int min_slots = config.mm_min_slots;
if (!min_slots) min_slots = ssp->max_wu_results/2;
int max_slots = config.mm_max_slots;
if (!max_slots) max_slots = ssp->max_wu_results;
int max_locked = 10;
lock_sema();
i = rand() % ssp->max_wu_results;
// scan through the job cache, maintaining a JOB_SET of jobs
// that we can send to this client, ordered by score.
//
for (int slots_scanned=0; slots_scanned<max_slots; slots_scanned++) {
i = (i+1) % ssp->max_wu_results;
WU_RESULT& wu_result = ssp->wu_results[i];
switch (wu_result.state) {
case WR_STATE_EMPTY:
continue;
case WR_STATE_PRESENT:
slots_nonempty++;
break;
default:
slots_nonempty++;
if (wu_result.state == g_pid) break;
slots_locked++;
continue;
}
JOB job;
job.index = i;
// get score for this job, and skip it if it fails quick check.
// NOTE: the EDF check done in get_score()
// includes only in-progress jobs.
//
if (!job.get_score()) {
continue;
}
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] score for %s: %f\n", wu_result.workunit.name, job.score
);
}
if (job.score > jobs.lowest_score() || !jobs.request_satisfied()) {
ssp->wu_results[i].state = g_pid;
unlock_sema();
if (wu_is_infeasible_slow(wu_result, *g_request, *g_reply)) {
// if we can't use this job, put it back in pool
//
lock_sema();
ssp->wu_results[i].state = WR_STATE_PRESENT;
continue;
}
lock_sema();
jobs.add_job(job);
}
if (jobs.request_satisfied() && slots_scanned>=min_slots) break;
}
if (!slots_nonempty) {
log_messages.printf(MSG_CRITICAL,
"Job cache is empty - check feeder\n"
);
g_wreq->no_jobs_available = true;
}
// TODO: trim jobs from tail of list until we pass the EDF check
//
jobs.send();
unlock_sema();
if (slots_locked > max_locked) {
log_messages.printf(MSG_CRITICAL,
"Found too many locked slots (%d>%d) - increase array size\n",
slots_locked, max_locked
);
}
}