boinc/client/proxy.C

441 lines
15 KiB
C++
Raw Normal View History

// The contents of this file are subject to the BOINC Public License
// Version 1.0 (the "License"); you may not use this file except in
// compliance with the License. You may obtain a copy of the License at
// http://boinc.berkeley.edu/license_1.0.txt
//
// Software distributed under the License is distributed on an "AS IS"
// basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
// License for the specific language governing rights and limitations
// under the License.
//
// The Original Code is the Berkeley Open Infrastructure for Network Computing.
//
// The Initial Developer of the Original Code is the SETI@home project.
// Portions created by the SETI@home project are Copyright (C) 2002
// University of California at Berkeley. All Rights Reserved.
//
// Contributor(s):
//
#include "cpp.h"
#ifdef _WIN32
#include "boinc_win.h"
#endif
#ifndef _WIN32
#include <cstring>
#include <sstream>
#if HAVE_SYS_STAT_H
#include <sys/stat.h>
#endif
#if HAVE_SYS_SOCKET_H
#include <sys/socket.h>
#endif
#if HAVE_NETINET_IN_H
#include <netinet/in.h>
#endif
#if HAVE_UNISTD_H
#include <unistd.h>
#endif
#endif
#include "error_numbers.h"
#include "filesys.h"
#include "util.h"
#include "client_msgs.h"
#include "parse.h"
#include "proxy.h"
// Read the contents of the socket into buf
//
static int proxy_read_reply(int socket, char* buf, int len) {
int i, n;
for (i=0; i<len-1; i++) {
n = recv(socket, buf+i, 1, 0);
if (n != 1) break;
}
buf[i] = 0;
return i;
}
// Make sure we send the full contents of each message. Messages
// are relatively short, so it's safe
//
/*static int proxy_atomic_send(int socket, char *buf, int size) {
int ret, len;
ret = 0;
while (size > 0) {
len = send(socket, buf+ret, size, 0);
if ( len == -1 && errno != ) fatal("atomic_out() failed to send(), %d\n", socks_errno());
ret += len;
size -= len;
}
return ret;
}
*/
void print_buf( char *buf, int n ) {
for (int i=0;i<n;i++) printf( "%d ",buf[i] );
printf( "\n" );
}
PROXY::PROXY() {
strcpy(proxy_data,"");
proxy_state = PROXY_STATE_CONNECTING;
proxy_retval = 0;
}
void PROXY::init(char *dst_host, int port) {
strcpy(dest_serv_name, dst_host);
dest_serv_port = port;
proxy_state = PROXY_STATE_CONNECTING;
}
PROXY::~PROXY() {
}
int PROXY::set_proxy(PROXY_INFO *new_pi) {
pi.use_http_proxy = new_pi->use_http_proxy;
strcpy(pi.http_user_name, new_pi->http_user_name);
strcpy(pi.http_user_passwd, new_pi->http_user_passwd);
strcpy(pi.http_server_name, new_pi->http_server_name);
pi.http_server_port = new_pi->http_server_port;
pi.use_http_auth = new_pi->use_http_auth;
pi.use_socks_proxy = new_pi->use_socks_proxy;
strcpy(pi.socks5_user_name, new_pi->socks5_user_name);
strcpy(pi.socks5_user_passwd, new_pi->socks5_user_passwd);
strcpy(pi.socks_server_name, new_pi->socks_server_name);
pi.socks_server_port = new_pi->socks_server_port;
pi.socks_version = new_pi->socks_version;
return 0;
}
char *PROXY::get_proxy_server_name(char *regular_server) {
if (pi.use_socks_proxy) return pi.socks_server_name;
else if (pi.use_http_proxy) return pi.http_server_name;
else return regular_server;
}
int PROXY::get_proxy_port(int regular_port) {
if (pi.use_socks_proxy) return pi.socks_server_port;
else if (pi.use_http_proxy) return pi.http_server_port;
else return regular_port;
}
int PROXY::proxy_failed(int failure_code) {
proxy_state = PROXY_STATE_DONE;
proxy_retval = failure_code;
return 0;
}
// Initialize proxy_data with a socks4 or socks5 connection request
// see http://www.socks.nec.com/rfc/rfc1928.txt
// see http://www.socks.nec.com/protocol/socks4.protocol
// TODO: add support for GSSAPI authentication, IPv6 addresses, name -> IP resolution
// One current problem is that the client may not fully read/write messages
// to the server if buffers are full. proxy_atomic_send is an attempt to
// compensate, it should be fully implemented and tested if this becomes a
// significant issue. I'm not too worried though, since the messages are
// always very small, and unlikely to cause space concerns (Eric Heien 3/26/04)
// Check available methods on the socks server
//
int PROXY::socks_prepare_method_req(char *buf) {
int nbytes = 0;
char *marker = buf;
if (pi.socks_version != SOCKS_VERSION_5) return ERR_SOCKS_UNKNOWN_FAILURE;
nbytes = 3;
*marker++ = SOCKS_VERSION_5;
if (*pi.socks5_user_name && *pi.socks5_user_passwd) {
*marker++ = 2; // 2 possible methods
*marker++ = SOCKS_AUTH_USER_PASS; // user/pass
nbytes++;
} else {
*marker++ = 1; // 1 possible method:
}
*marker++ = SOCKS_AUTH_NONE_NEEDED; // no authentication
return nbytes;
}
int PROXY::socks_prepare_user_pass(char *buf) {
int nbytes;
char *marker = buf;
if (pi.socks_version != SOCKS_VERSION_5) return ERR_SOCKS_UNKNOWN_FAILURE;
// Send user and password
*marker++ = SOCKS5_USER_SUBNEG_VERSION_1;
*marker++ = strlen(pi.socks5_user_name);
strncpy(marker, pi.socks5_user_name, strlen(pi.socks5_user_name));
marker += strlen(pi.socks5_user_name);
*marker++ = strlen(pi.socks5_user_passwd);
strncpy(marker, pi.socks5_user_passwd, strlen(pi.socks5_user_passwd));
nbytes = 1+1+strlen(pi.socks5_user_name)+1+strlen(pi.socks5_user_passwd);
return nbytes;
}
int PROXY::socks_prepare_connect_req(char *buf, int ns_port, int ip_addr, char *domain_name) {
int nbytes;
char *marker = buf, *p;
if (pi.socks_version == SOCKS_VERSION_4) {
*marker++ = SOCKS_VERSION_4;
*marker++ = 1; // Request connection
p = (char*)&ns_port; // to this port
for (int i=0;i<2;i++) *marker++ = *p++;
p = (char*)&ip_addr; // at this IP address
for (int i=0;i<4;i++) *marker++ = *p++;
strncpy(marker, pi.socks5_user_name, strlen(pi.socks5_user_name));
nbytes = 1+1+2+4+strlen(pi.socks5_user_name);
} else if (pi.socks_version == SOCKS_VERSION_5) {
if (strlen(domain_name) > 255) return ERR_SOCKS_UNKNOWN_FAILURE;
*marker++ = SOCKS_VERSION_5;
*marker++ = 1; // request connection
*marker++ = 0; // reserved
nbytes = 3;
if (strlen(domain_name) > 0) {
nbytes += 2+strlen(domain_name);
*marker++ = SOCKS5_ADDR_TYPE_DOMAIN_NAME;
*marker++ = strlen(domain_name);
p = domain_name;
for (unsigned int i=0;i<strlen(domain_name);i++) *marker++ = *p++;
} else {
nbytes += 1+4;
*marker++ = SOCKS5_ADDR_TYPE_IPV4;
p = (char*)&ip_addr;
for (int i=0;i<4;i++) *marker++ = *p++;
}
p = (char*)&ns_port;
for (int i=0;i<2;i++) *marker++ = *p++;
nbytes += 2;
} else {
return ERR_SOCKS_UNKNOWN_FAILURE;
}
return nbytes;
}
int PROXY::socks_parse_method_ack(char *buf) {
// This parsing only makes sense in SOCKS version 5
if (pi.socks_version != SOCKS_VERSION_5) return ERR_SOCKS_UNKNOWN_FAILURE;
// The buffer should start with the version 5 identifier
if (buf[0] != SOCKS_VERSION_5) return ERR_SOCKS_UNKNOWN_SERVER_VERSION;
// Depending on the method, move to a different state or return an error
switch (buf[1]) {
case SOCKS_AUTH_NONE_NEEDED:
proxy_state = PROXY_STATE_SOCKS_SEND_CONNECT_REQ;
break;
case SOCKS_AUTH_USER_PASS:
proxy_state = PROXY_STATE_SOCKS_SEND_USER_PASS;
break;
case SOCKS_AUTH_GSSAPI:
case SOCKS_AUTH_NONE_ACCEPTABLE:
default:
return ERR_SOCKS_UNSUPPORTED;
}
return 0;
}
int PROXY::socks_parse_user_pass_ack(char *buf) {
// This parsing only makes sense in SOCKS version 5
if (pi.socks_version != SOCKS_VERSION_5) return ERR_SOCKS_UNKNOWN_FAILURE;
// The buffer should start with the subnegotiation version identifier
if (buf[0] != SOCKS5_USER_SUBNEG_VERSION_1) return ERR_SOCKS_UNKNOWN_SERVER_VERSION;
// 0 indicates success, otherwise we assume a bad user/password
if (buf[1] != 0) return ERR_SOCKS_BAD_USER_PASS;
proxy_state = PROXY_STATE_SOCKS_SEND_CONNECT_REQ;
return 0;
}
int PROXY::socks_parse_connect_ack(char *buf) {
switch (pi.socks_version) {
case SOCKS_VERSION_4:
if (buf[0] != 0) return ERR_SOCKS_UNKNOWN_FAILURE;
switch (buf[1]) {
case SOCKS4_REQ_GRANTED:
proxy_state = PROXY_STATE_DONE;
proxy_retval = 0;
break;
case SOCKS4_REQ_REJECTED:
return ERR_SOCKS_REQUEST_FAILED;
case SOCKS4_REQ_NO_IDENTD:
return ERR_SOCKS_REQUEST_FAILED;
case SOCKS4_REQ_BAD_USER_PASS:
return ERR_SOCKS_BAD_USER_PASS;
default:
return ERR_SOCKS_UNKNOWN_FAILURE;
}
break;
case SOCKS_VERSION_5:
if (buf[0] != SOCKS_VERSION_5) return ERR_SOCKS_UNKNOWN_FAILURE;
switch (buf[1]) {
case SOCKS5_CONNECTION_SUCCEEDED:
proxy_state = PROXY_STATE_DONE;
proxy_retval = 0;
break;
case SOCKS5_ERR_SERVER_FAILURE:
return ERR_SOCKS_UNKNOWN_FAILURE;
case SOCKS5_ERR_NOT_ALLOWED:
return ERR_SOCKS_REQUEST_FAILED;
case SOCKS5_ERR_NETWORK_UNREACHABLE:
return ERR_SOCKS_CANT_REACH_HOST;
case SOCKS5_ERR_HOST_UNREACHABLE:
return ERR_SOCKS_CANT_REACH_HOST;
case SOCKS5_ERR_CONNECTION_REFUSED:
return ERR_SOCKS_CONN_REFUSED;
case SOCKS5_ERR_TTL_EXPIRED:
return ERR_SOCKS_UNKNOWN_FAILURE;
case SOCKS5_ERR_COMMAND_UNSUPPORTED:
return ERR_SOCKS_UNKNOWN_FAILURE;
case SOCKS5_ERR_ADDR_TYPE_UNSUPPORTED:
return ERR_SOCKS_UNKNOWN_FAILURE;
default:
return ERR_SOCKS_UNKNOWN_FAILURE;
}
break;
default:
return ERR_SOCKS_UNKNOWN_FAILURE;
}
return 0;
}
bool PROXY::proxy_negotiated() {
return (proxy_state == PROXY_STATE_DONE);
}
bool PROXY::proxy_poll() {
int n, retval, ip_addr, nbytes;
bool action = false;
char buf[256];
SCOPE_MSG_LOG scope_messages(log_messages, CLIENT_MSG_LOG::DEBUG_PROXY);
switch(proxy_state) {
case PROXY_STATE_CONNECTING:
if (pi.use_socks_proxy) {
if (pi.socks_version == SOCKS_VERSION_4) {
scope_messages.printf("PROXY::proxy_poll(): attempting SOCKS4 connect\n");
proxy_state = PROXY_STATE_SOCKS_SEND_CONNECT_REQ;
} else if (pi.socks_version == SOCKS_VERSION_5) {
scope_messages.printf("PROXY::proxy_poll(): attempting SOCKS5 connect\n");
proxy_state = PROXY_STATE_SOCKS_SEND_METHOD_REQ;
} else {
scope_messages.printf("PROXY::proxy_poll(): SOCKS proxy ignored - unknown version: %d\n", pi.socks_version);
proxy_state = PROXY_STATE_DONE;
}
} else {
scope_messages.printf("PROXY::proxy_poll(): SOCKS proxy ignored - user pref\n");
proxy_state = PROXY_STATE_DONE;
}
action = true;
break;
case PROXY_STATE_SOCKS_SEND_METHOD_REQ:
nbytes = socks_prepare_method_req(proxy_data);
scope_messages.printf("PROXY::proxy_poll(): sending method request\n");
if (nbytes <= 0) {
proxy_failed(ERR_SOCKS_UNKNOWN_FAILURE);
} else {
n = send(socket, proxy_data, nbytes, 0);
if (n != nbytes) proxy_failed(ERR_SOCKS_UNKNOWN_FAILURE);
else proxy_state = PROXY_STATE_SOCKS_PARSE_METHOD_ACK;
}
action = true;
break;
case PROXY_STATE_SOCKS_PARSE_METHOD_ACK:
if (io_ready) {
nbytes = proxy_read_reply(socket, buf, 256);
if (nbytes == 0) break;
scope_messages.printf("PROXY::proxy_poll(): parsing method request ack\n");
retval = socks_parse_method_ack(buf);
if (retval) proxy_failed (retval);
action = true;
}
break;
case PROXY_STATE_SOCKS_SEND_USER_PASS:
scope_messages.printf("PROXY::proxy_poll(): sending user/pass\n");
nbytes = socks_prepare_user_pass(proxy_data);
if (nbytes <= 0) {
proxy_failed(ERR_SOCKS_UNKNOWN_FAILURE);
} else {
n = send(socket, proxy_data, nbytes, 0);
if (n != nbytes) proxy_failed(ERR_SOCKS_UNKNOWN_FAILURE);
else proxy_state = PROXY_STATE_SOCKS_PARSE_USER_PASS_ACK;
}
action = true;
break;
case PROXY_STATE_SOCKS_PARSE_USER_PASS_ACK:
if (io_ready) {
action = true;
nbytes = proxy_read_reply(socket, buf, 256);
if (nbytes == 0) break;
scope_messages.printf("PROXY::proxy_poll(): parsing user/pass ack\n");
retval = socks_parse_user_pass_ack(buf);
if (retval) proxy_failed(retval);
}
break;
case PROXY_STATE_SOCKS_SEND_CONNECT_REQ:
retval = get_ip_addr(ip_addr);
if (retval) {
proxy_failed(retval);
break;
}
scope_messages.printf("PROXY::proxy_poll(): sending connect request\n");
nbytes = socks_prepare_connect_req(proxy_data, htons(dest_serv_port), ip_addr, dest_serv_name);
if (nbytes <= 0) {
proxy_failed(ERR_SOCKS_UNKNOWN_FAILURE);
} else {
n = send(socket, proxy_data, nbytes, 0);
if (n != nbytes) proxy_failed(ERR_SOCKS_UNKNOWN_FAILURE);
else proxy_state = PROXY_STATE_SOCKS_PARSE_CONNECT_ACK;
}
action = true;
break;
case PROXY_STATE_SOCKS_PARSE_CONNECT_ACK:
if (io_ready) {
action = true;
nbytes = proxy_read_reply(socket, buf, 256);
if (nbytes == 0) break;
scope_messages.printf("PROXY::proxy_poll(): parsing connect ack\n");
retval = socks_parse_connect_ack(buf);
if (retval) {
proxy_failed(retval);
}
}
break;
}
return action;
}
#ifdef __GNUC__
static volatile const char __attribute__((unused)) *BOINCrcsid="$Id$";
#else
static volatile const char *BOINCrcsid="$Id$";
#endif