boinc/client/cs_scheduler.C

581 lines
17 KiB
C++
Raw Normal View History

// The contents of this file are subject to the Mozilla Public License
// Version 1.0 (the "License"); you may not use this file except in
// compliance with the License. You may obtain a copy of the License at
// http://www.mozilla.org/MPL/
//
// Software distributed under the License is distributed on an "AS IS"
// basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
// License for the specific language governing rights and limitations
// under the License.
//
// The Original Code is the Berkeley Open Infrastructure for Network Computing.
//
// The Initial Developer of the Original Code is the SETI@home project.
// Portions created by the SETI@home project are Copyright (C) 2002
// University of California at Berkeley. All Rights Reserved.
//
// Contributor(s):
//
// This file contains high-level logic for communicating with
// scheduling servers,
// and for merging the result of a scheduler RPC into the client state
// Note: code for actually doing a scheduler RPC is elsewhere,
// namely scheduler_op.C
#include <stdio.h>
#include <math.h>
#include <time.h>
#ifdef _USING_FCGI_
#undef _USING_FCGI_
#endif
#include "crypt.h"
#include "error_numbers.h"
#include "file_names.h"
#include "parse.h"
#include "log_flags.h"
#include "message.h"
#include "scheduler_op.h"
#include "client_state.h"
// quantities like avg CPU time decay by a factor of e every week
//
#define EXP_DECAY_RATE (1./(3600*24*7))
#define SECONDS_IN_DAY 86400
// estimate the days of work remaining
//
double CLIENT_STATE::current_water_days() {
unsigned int i;
RESULT* rp;
double seconds_remaining=0;
for (i=0; i<results.size(); i++) {
rp = results[i];
if (rp->is_compute_done) continue;
if (rp->cpu_time > 0) {
seconds_remaining += (rp->wup->seconds_to_complete - rp->cpu_time);
} else {
seconds_remaining += rp->wup->seconds_to_complete;
}
}
return (seconds_remaining * SECONDS_IN_DAY);
}
// seconds of work needed to come up to high-water mark
//
double CLIENT_STATE::work_needed_secs() {
double x = current_water_days();
if (x > prefs->high_water_days) return 0;
return (prefs->high_water_days - x)*86400;
}
// update exponentially-averaged CPU times of all projects
//
void CLIENT_STATE::update_avg_cpu(PROJECT* p) {
time_t now = time(0);
double deltat = now - p->exp_avg_mod_time;
if (deltat > 0) {
if (p->exp_avg_cpu != 0) {
p->exp_avg_cpu *= exp(deltat*EXP_DECAY_RATE);
}
p->exp_avg_mod_time = now;
}
}
// find a project that needs its master file parsed
//
PROJECT* CLIENT_STATE::next_project_master_pending() {
unsigned int i;
PROJECT* p;
time_t now = time(0);
for (i=0; i<projects.size(); i++) {
p = projects[i];
if (p->min_rpc_time > now ) continue;
if (p->master_url_fetch_pending) {
return p;
}
}
return 0;
}
// return the next project after "old", in debt order,
// that is eligible for a scheduler RPC
//
PROJECT* CLIENT_STATE::next_project(PROJECT* old) {
PROJECT* p, *pbest;
int best = 999;
time_t now = time(0);
unsigned int i;
pbest = 0;
for (i=0; i<projects.size(); i++) {
p = projects[i];
if (p->min_rpc_time > now ) continue;
if (old && p->debt_order <= old->debt_order) continue;
if (p->debt_order < best) {
pbest = p;
best = p->debt_order;
}
}
return pbest;
}
#if 0
// choose a project to ask for work
//
PROJECT* CLIENT_STATE::choose_project() {
PROJECT* p, *bestp;
unsigned int i;
double best_ratio, ratio;
// update the average CPU times of all projects
//
for (i=0; i<projects.size(); i++) {
update_avg_cpu(projects[i]);
}
// pick the project for which share/avg is largest
// (and we have permission to contact it)
//
best_ratio = 0;
bestp = 0;
for (i=0; i<projects.size(); i++) {
p = projects[i];
if (time(0) < p->next_request_time) continue;
if (p->exp_avg_cpu == 0) return p;
ratio = p->resource_share/p->exp_avg_cpu;
if (ratio >= best_ratio) {
best_ratio = ratio;
bestp = p;
}
}
return bestp;
}
#endif
// Compute the "resource debt" of each project. This is used
// to determine what project we will focus on next, based on
// the user specified resource share
//
void CLIENT_STATE::compute_resource_debts() {
unsigned int i, j;
PROJECT* p, *pbest;
double best;
for (i=0; i<projects.size(); i++) {
p = projects[i];
update_avg_cpu(p);
if (p->exp_avg_cpu == 0) {
p->resource_debt = p->resource_share;
} else {
p->resource_debt = p->resource_share/p->exp_avg_cpu;
}
p->debt_order = -1;
}
// put in decreasing order. Should use qsort or some stdlib thang
//
for (i=0; i<projects.size(); i++) {
best = -2;
for (j=0; j<projects.size(); j++) {
p = projects[j];
if (p->debt_order >= 0) continue;
if (p->resource_debt > best) {
best = p->resource_debt;
pbest = p;
}
}
pbest->debt_order = i;
}
}
// Prepare the scheduler request. This writes the request in XML to a
// file (SCHED_OP_REQUEST_FILE) which is later sent to the scheduling
// server
//
int CLIENT_STATE::make_scheduler_request(PROJECT* p, double work_req) {
FILE* f = fopen(SCHED_OP_REQUEST_FILE, "wb");
unsigned int i;
RESULT* rp;
if(p==NULL) {
fprintf(stderr, "error: CLIENT_STATE.make_scheduler_request: unexpected NULL pointer p\n");
return ERR_NULL;
}
if(work_req<0) {
fprintf(stderr, "error: CLIENT_STATE.make_scheduler_request: negative work_req\n");
return ERR_NEG;
}
if (!f) return ERR_FOPEN;
fprintf(f,
"<scheduler_request>\n"
" <authenticator>%s</authenticator>\n"
" <hostid>%d</hostid>\n"
" <rpc_seqno>%d</rpc_seqno>\n"
" <platform_name>%s</platform_name>\n"
" <core_client_version>%d</core_client_version>\n"
" <work_req_seconds>%f</work_req_seconds>\n",
p->authenticator,
p->hostid,
p->rpc_seqno,
platform_name,
version,
work_req
);
if (p->code_sign_key) {
fprintf(f, "<code_sign_key>\n%s</code_sign_key>\n", p->code_sign_key);
}
FILE* fprefs = fopen(PREFS_FILE_NAME, "r");
if (!fprefs) return ERR_FOPEN;
copy_stream(fprefs, f);
fclose(fprefs);
time_stats.write(f, true);
net_stats.write(f, true);
host_info.write(f);
for (i=0; i<results.size(); i++) {
rp = results[i];
if (rp->project == p && !rp->is_server_ack) {
if (rp->is_upload_done()) {
rp->write(f, true);
}
}
}
fprintf(f, "</scheduler_request>\n");
fclose(f);
return 0;
}
// find a project with results that are overdue to report,
// and which we're allowed to contact.
//
PROJECT* CLIENT_STATE::find_project_with_overdue_results() {
unsigned int i;
RESULT* r;
time_t now = time(0);
for (i=0; i<results.size(); i++) {
r = results[i];
if (r->is_compute_done && r->is_upload_done() && !r->is_server_ack) {
if (r->project->min_rpc_time < now) {
return r->project;
}
}
}
return 0;
}
// return true if we're allowed to do a scheduler RPC to at least one project
//
bool CLIENT_STATE::some_project_rpc_ok() {
unsigned int i;
time_t now = time(0);
for (i=0; i<projects.size(); i++) {
if (projects[i]->min_rpc_time < now) return true;
}
return false;
}
// called from the client's polling loop.
// initiate scheduler RPC activity if needed and possible
//
bool CLIENT_STATE::scheduler_rpc_poll() {
double work_secs;
PROJECT* p;
bool action, below_low_water;
switch(scheduler_op->state) {
case SCHEDULER_OP_STATE_IDLE:
below_low_water = (current_water_days() <= prefs->low_water_days);
if (below_low_water && some_project_rpc_ok()) {
compute_resource_debts();
scheduler_op->init_get_work();
action = true;
} else {
p = find_project_with_overdue_results();
if (p) {
compute_resource_debts();
if (p->debt_order == 0) {
work_secs = work_needed_secs();
} else {
work_secs = 0;
}
scheduler_op->init_return_results(p, work_secs);
action = true;
}
}
break;
default:
scheduler_op->poll();
if (scheduler_op->state == SCHEDULER_OP_STATE_IDLE) {
action = true;
}
break;
}
return action;
}
#if 0
// manage the task of maintaining an adequate supply of work.
//
bool CLIENT_STATE::get_work() {
PROJECT* project;
int retval, work_secs;
bool action=false;
if (need_work()) {
switch(scheduler_op->state) {
case SCHEDULER_OP_STATE_IDLE:
// if no scheduler request pending, start one
//
project = choose_project();
if (!project) {
if (log_flags.sched_op_debug) {
printf("all projects temporarily backed off\n");
}
return false;
}
work_secs =
(int) (prefs->high_water_days - current_water_days())*86400;
retval = make_scheduler_request(project, work_secs);
if (retval) {
fprintf(stderr, "make_scheduler_request: %d\n", retval);
break;
}
scheduler_op->start_op(project);
action = true;
break;
default:
scheduler_op->poll();
if (scheduler_op->state == SCHEDULER_OP_STATE_DONE) {
scheduler_op->state = SCHEDULER_OP_STATE_IDLE;
action = true;
if (scheduler_op->scheduler_op_retval) {
fprintf(stderr,
"scheduler RPC to %s failed: %d\n",
scheduler_op->project->master_url,
scheduler_op->scheduler_op_retval
);
if (log_flags.sched_ops) {
printf("HTTP work request failed: %d\n", retval);
}
break;
} else {
handle_scheduler_reply(*scheduler_op);
client_state_dirty = true;
}
}
break;
}
}
return action;
}
#endif
// see whether a new preferences set, obtained from the given
// project, looks "reasonable". This is to prevent accidental or
// intentional preferences corruption
// Currently this is primitive: just make sure there's at least 1 project
// TODO: figure out what else to look for here
bool PREFS::looks_reasonable(PROJECT& project) {
if (projects.size() > 0) return true;
return false;
}
// Parse the reply from a scheduler and configure internal structures
// appropriately
//
void CLIENT_STATE::handle_scheduler_reply(
PROJECT* project, char* scheduler_url
) {
SCHEDULER_REPLY sr;
FILE* f;
int retval;
unsigned int i;
char prefs_backup[256];
PROJECT *pp, *sp;
PREFS* new_prefs;
bool signature_valid;
contacted_sched_server = true;
if (log_flags.sched_op_debug) {
f = fopen(SCHED_OP_RESULT_FILE, "r");
printf("------------- SCHEDULER REPLY ----------\n");
copy_stream(f, stdout);
fclose(f);
printf("------------- END ----------\n");
}
f = fopen(SCHED_OP_RESULT_FILE, "r");
retval = sr.parse(f);
if (strlen(sr.message)) {
show_message(sr.message, sr.message_priority);
}
if (sr.request_delay) {
project->min_rpc_time = time(0) + sr.request_delay;
}
if (sr.hostid) {
project->hostid = sr.hostid;
project->rpc_seqno = 0;
}
// if the scheduler reply includes preferences
// that are newer than what we have on disk, then
// - verify that the new prefs look reasonable;
// they should include at least one project.
// - rename the current prefs file
// - copy new preferences to prefs.xml
// - copy any new projects into the CLIENT_STATE structure
// - update the preferences info of projects already in CLIENT_STATE
//
// There may be projects in CLIENT_STATE that are not in the new prefs;
// i.e. the user has dropped out of these projects.
// We'll continue with any ongoing work for these projects,
// but they'll be dropped the next time the client starts up.
//
if (sr.prefs_mod_time > prefs->mod_time) {
f = fopen(PREFS_TEMP_FILE_NAME, "w");
fprintf(f,
"<preferences>\n"
" <prefs_mod_time>%d</prefs_mod_time>\n"
" <from_project>%s</from_project>\n"
" <from_scheduler>%s</from_scheduler>\n",
sr.prefs_mod_time,
project->master_url,
scheduler_url
);
fputs(sr.prefs_xml, f);
fprintf(f,
"</preferences>\n"
);
fclose(f);
f = fopen(PREFS_TEMP_FILE_NAME, "r");
new_prefs = new PREFS;
new_prefs->parse(f);
fclose(f);
if (new_prefs->looks_reasonable(*project)) {
make_prefs_backup_name(*prefs, prefs_backup);
rename(PREFS_FILE_NAME, prefs_backup);
rename(PREFS_TEMP_FILE_NAME, PREFS_FILE_NAME);
for (i=0; i<new_prefs->projects.size(); i++) {
pp = new_prefs->projects[i];
sp = lookup_project(pp->master_url);
if (sp) {
sp->copy_prefs_fields(*pp);
} else {
projects.push_back(pp);
}
}
delete prefs;
prefs = new_prefs;
} else {
fprintf(stderr, "New preferences don't look reasonable, ignoring\n");
}
}
// if the scheduler reply includes a code-signing key,
// accept it if we don't already have one from the project.
// Otherwise verify its signature, using the key we already have.
//
if (sr.code_sign_key) {
if (!project->code_sign_key) {
project->code_sign_key = strdup(sr.code_sign_key);
} else {
retval = verify_string2(
sr.code_sign_key, sr.code_sign_key_signature,
project->code_sign_key, signature_valid
);
if (!retval && signature_valid) {
free(project->code_sign_key);
project->code_sign_key = strdup(sr.code_sign_key);
} else {
fprintf(stderr,
"New code signing key from %s doesn't validate\n",
project->project_name
);
}
}
}
// copy new entities to client state
//
for (i=0; i<sr.apps.size(); i++) {
APP* app = lookup_app(project, sr.apps[i].name);
if (app) {
//*app = sr.apps[i];
retval = link_app(project,app); // not sure about this
} else {
app = new APP;
*app = sr.apps[i];
retval = link_app(project, app);
if (!retval) apps.push_back(app);
}
}
for (i=0; i<sr.file_infos.size(); i++) {
if (!lookup_file_info(project, sr.file_infos[i].name)) {
FILE_INFO* fip = new FILE_INFO;
*fip = sr.file_infos[i];
retval = link_file_info(project, fip);
if (!retval) file_infos.push_back(fip);
}
}
for (i=0; i<sr.app_versions.size(); i++) {
APP* app = lookup_app(project, sr.app_versions[i].app_name);
if (!lookup_app_version(app, sr.app_versions[i].version_num)) {
APP_VERSION* avp = new APP_VERSION;
*avp = sr.app_versions[i];
retval = link_app_version(project, avp);
if (!retval) app_versions.push_back(avp);
}
}
for (i=0; i<sr.workunits.size(); i++) {
if (!lookup_workunit(project, sr.workunits[i].name)) {
WORKUNIT* wup = new WORKUNIT;
*wup = sr.workunits[i];
retval = link_workunit(project, wup);
if (!retval) workunits.push_back(wup);
}
}
for (i=0; i<sr.results.size(); i++) {
if (!lookup_result(project, sr.results[i].name)) {
RESULT* rp = new RESULT;
*rp = sr.results[i];
retval = link_result(project, rp);
if (!retval) results.push_back(rp);
}
}
// update records for ack'ed results
//
for (i=0; i<sr.result_acks.size(); i++) {
RESULT* rp = lookup_result(project, sr.result_acks[i].name);
if (log_flags.sched_op_debug) {
printf("got ack for result %s\n", sr.result_acks[i].name);
}
if (rp) {
rp->is_server_ack = true;
} else {
fprintf(stderr,
"ERROR: got ack for result %s, can't find\n",
sr.result_acks[i].name
);
}
}
if (log_flags.state_debug) {
printf("State after handle_scheduler_reply():\n");
print_counts();
}
}