boinc/ssim/ssim.cpp

619 lines
17 KiB
C++
Raw Normal View History

// This file is part of BOINC.
// http://boinc.berkeley.edu
// Copyright (C) 2011 University of California
//
// BOINC is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License
// as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// BOINC is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with BOINC. If not, see <http://www.gnu.org/licenses/>.
// ssim - simulator for distributed storage
//
// Simulates the storage of files on a dynamic set of hosts.
//
// The model of the host population is:
// - hosts arrival is a Poisson process
// - host lifetime is exponentially distributed
// - the time needed to download n bytes of data to/from a host is
// U()*n/DOWNLOAD_BYTES_SEC
// where U() is a uniform random var
// TODO: add a factor corresponding to host availability
#define HOSTS_PER_DAY 10.
#define HOST_LIFE_MEAN 100.*86400
#define UPLOAD_BYTES_SEC 1e6
#define DOWNLOAD_BYTES_SEC 5e6
// We simulate policies based on coding and replication.
//
// Coding means that data is divided into M = N+K units,
// of which any N are sufficient to reconstruct the original data.
//
// The units in an encoding can themselves be encoded.
// In general we model C levels of encoding.
//
// The bottom-level data units ("chunks") are stored on hosts,
// possibly with replication
#define ENCODING_N 4
#define ENCODING_K 2
#define ENCODING_M 6
#define ENCODING_LEVELS 1
#define REPLICATION_LEVEL 1
// When we need to reconstruct an encoded unit on the server,
// we try to upload N_UPLOAD subunits,
// where N <= N_UPLOAD <= M
#define N_UPLOAD 5
// Terminology:
//
// A chunk may or may not be "present_on_server".
// An encoded data unit is "present_on_server" if at least N
// of its subunits are present_on_server.
// A data unit is "recoverable" if it can be reconstruct on the server,
// based on current state.
// A chunk is "recoverable" if it is assigned at least 1 host.
// (if it is downloading, it's still present on the server)
// An encoded data unit is "recoverable" if at least N
// of its subunits are recoverable.
// A chunk is "uploading" if at least one of its instances
// is being uploaded to the server.
// An encoded data unit is "uploading" if at least
// 1 of its subunits is uploading,
// and at least N of its subunits are either present_on_server or uploading
// The scheduling policy can be briefly described as:
// 1) distribute chunks to hosts when possible, up to the replication level
// Put at most 1 chunk of a file on a given host.
// 2) if a data unit becomes unrecoverable,
// upload its parent unit, reconstruct the data, then do 1)
// Figures of merit
//
// for each file, we compute:
// - the average and peak server network rate, up and down
// - the average and peak disk usage
// - the average and min fault tolerance level
// (i.e. number of simultaneous host failures needed to lose the file)
//
// These are measured starting from the time when the file's
// initial downloads have all succeeded or failed
#include <math.h>
#include <stdio.h>
#include <set>
#include "des.h"
using std::set;
#define K 15
// this many packets per meta-packet
#define N 10
// need this many to reconstruct the meta-packet
#define META_K 15
// similar, meta-packets per file
#define META_N 10
SIMULATOR sim;
inline double drand() {
return (double)rand()/(double)RAND_MAX;
}
double ran_exp(double mean) {
return -log(drand())*mean;
}
char* time_str(double t) {
static char buf[256];
struct tm;
int n = (int)t;
int nsec = n % 60;
n /= 60;
int nmin = n % 60;
n /= 60;
int nhour = n % 24;
n /= 24;
sprintf(buf, "%4d days %02d:%02d:%02d", n, nhour, nmin, nsec);
return buf;
}
char* now_str() {
return time_str(sim.now);
}
struct CHUNK;
struct META_CHUNK;
struct DFILE;
struct HOST;
set<HOST*> hosts;
struct CHUNK_ON_HOST : public EVENT {
HOST* host;
CHUNK* chunk;
char name[256];
bool present_on_host;
bool transfer_in_progress; // upload if present_on_host, else download
virtual void handle();
inline bool download_in_progress() {
return (transfer_in_progress && !present_on_host);
}
};
static int next_host_id=0;
struct HOST : public EVENT {
int id;
set<CHUNK_ON_HOST*> chunks;
virtual void handle();
HOST() {
t = sim.now + ran_exp(HOST_LIFE_MEAN);
id = next_host_id++;
hosts.insert(this);
}
};
struct HOST_ARRIVAL : public EVENT {
virtual void handle() {
sim.insert(new HOST);
t += ran_exp(86400./HOSTS_PER_DAY);
sim.insert(this);
}
};
struct REPORT_STATS : public EVENT {
virtual void handle() {
printf("%f: %lu hosts\n", t, hosts.size());
t += 86400;
sim.insert(this);
}
};
void die(const char* msg) {
printf("%s: %s\n", now_str(), msg);
exit(1);
}
// base class for chunks and meta-chunks
//
struct DATA_UNIT {
virtual bool recoverable(){die("recoverable undef"); return false;};
// can be reconstructed w/o reconstructing parent,
// assuming that current downloads succeed
virtual void start_upload(){die("start_upload undef"); };
virtual void assign(){die("assign undef"); };
virtual bool is_present_on_server(){die("pos undef"); return false;};
virtual void delete_chunks_from_server(){die("dcfs undef");};
virtual void now_present(){die("now_present undef");};
bool is_uploading;
char name[64];
};
struct CHUNK : DATA_UNIT {
set<CHUNK_ON_HOST*> hosts;
META_CHUNK* parent;
double size;
bool _is_present_on_server;
CHUNK(META_CHUNK* mc, double s, int index);
virtual void assign();
void host_failed(CHUNK_ON_HOST* p);
void upload_complete();
virtual bool recoverable() {
return (!hosts.empty());
}
virtual bool is_present_on_server() {
return _is_present_on_server;
}
virtual void start_upload() {
// if no upload of this chunk is in progress, start one.
// NOTE: all instances are inherently present_on_host
//
CHUNK_ON_HOST* c;
set<CHUNK_ON_HOST*>::iterator i;
for (i=hosts.begin(); i!=hosts.end(); i++) {
c = *i;
if (c->transfer_in_progress) return;
}
c = *(hosts.begin());
c->transfer_in_progress = true;
c->t = sim.now + (drand()+.5)*size/UPLOAD_BYTES_SEC;
printf("%s: starting upload of %s\n", now_str(), c->name);
sim.insert(c);
}
void download_complete();
virtual void delete_chunks_from_server() {
set<CHUNK_ON_HOST*>::iterator i;
for (i=hosts.begin(); i!=hosts.end(); i++) {
CHUNK_ON_HOST* c = *i;
if (c->download_in_progress()) return;
}
printf("%s: deleting %s from server\n", now_str(), name);
_is_present_on_server = false;
}
virtual void now_present() {
_is_present_on_server = true;
}
};
struct META_CHUNK : DATA_UNIT {
vector<DATA_UNIT*> children;
META_CHUNK* parent;
int n_children_present;
DFILE* dfile;
bool uploading;
META_CHUNK(
DFILE* d, META_CHUNK* par, double size, int encoding_level, int index
);
virtual bool is_present_on_server() {
int n=0;
for (int i=0; i<ENCODING_M; i++) {
if (children[i]->is_present_on_server()) {
n++;
if (n == ENCODING_N) return true;
}
}
return false;
}
virtual void now_present() {
for (int i=0; i<ENCODING_M; i++) {
children[i]->now_present();
}
}
int n_recoverable_children() {
int n = 0;
for (int i=0; i<ENCODING_M; i++) {
if (children[i]->recoverable()) {
n++;
}
}
return n;
}
// a child has become unrecoverable.
// reconstruct this data unit if we still can.
//
void child_unrecoverable() {
int n = n_recoverable_children();
printf("%s: a child of %s has become unrecoverable\n", now_str(), name);
if (n >= ENCODING_N) {
uploading = true;
for (unsigned int i=0; i<children.size(); i++) {
DATA_UNIT* c = children[i];
if (c->recoverable()) {
c->start_upload();
}
}
} else {
printf("%s: only %d recoverable children\n", now_str(), n);
}
}
// start download of descendant chunks as needed
//
virtual void assign() {
for (unsigned int i=0; i<children.size(); i++) {
children[i]->assign();
}
}
virtual void delete_chunks_from_server() {
for (unsigned int i=0; i<children.size(); i++) {
children[i]->delete_chunks_from_server();
}
}
// this is called only if we're uploading
//
void child_upload_complete() {
printf("%s: child upload complete for %s\n", now_str(), name);
int n = 0;
for (unsigned int i=0; i<children.size(); i++) {
DATA_UNIT* c = children[i];
if (c->is_present_on_server()) {
n++;
}
}
if (n >= ENCODING_N) {
now_present();
assign();
if (parent && parent->uploading) {
parent->child_upload_complete();
} else {
// if we're not reconstructing parent,
// delete any chunks not being downloaded
//
delete_chunks_from_server();
}
}
}
};
static int next_file_id=0;
// keeps track of a time-varying property of a file
// (server disk usage, up/download rate, fault tolerance)
//
struct STATS_ITEM {
double value;
double integral;
double max_val;
double max_val_time;
double prev_t;
double start_time;
bool first;
STATS_ITEM() {
value = 0;
integral = 0;
max_val = 0;
max_val_time = 0;
first = true;
}
void sample(double v, bool collecting_stats) {
double old_val = value;
value = v;
if (!collecting_stats) return;
if (first) {
first = false;
prev_t = sim.now;
return;
}
double dt = sim.now - prev_t;
prev_t = sim.now;
integral += dt*old_val;
if (v > max_val) {
max_val = v;
max_val_time = sim.now;
}
}
void sample_inc(double inc, bool collecting_stats) {
sample(value+inc, collecting_stats);
}
void print() {
sample_inc(0, true);
double dt = sim.now - start_time;
printf(" mean: %f\n", integral/dt);
printf(" max: %f\n", max_val);
printf(" time of max: %s\n", time_str(max_val_time));
}
};
struct DFILE : EVENT {
META_CHUNK* meta_chunk;
double size;
int id;
set<HOST*> unused_hosts;
// hosts that don't have any packets of this file
int pending_init_downloads;
// # of initial downloads pending.
// When this is zero, we start collecting stats for the file
double accounting_start_time;
STATS_ITEM disk_usage;
STATS_ITEM upload_rate;
STATS_ITEM download_rate;
STATS_ITEM fault_tolerance;
DFILE(double s) {
id = next_file_id++;
unused_hosts = hosts;
size = s;
}
// the creation of a file
//
virtual void handle() {
printf("creating file %d\n", id);
meta_chunk = new META_CHUNK(this, NULL, size, ENCODING_LEVELS, id);
meta_chunk->assign();
}
inline bool collecting_stats() {
return (pending_init_downloads == 0);
}
void print_stats() {
printf("Statistics for file %d\n", id);
printf(" Server disk usage:\n");
disk_usage.print();
printf(" Upload rate:\n");
upload_rate.print();
printf(" Download rate:\n");
download_rate.print();
printf(" Fault tolerance level:\n");
fault_tolerance.print();
}
};
//////////////////// method defs ////////////////////
// transfer has finished
//
void CHUNK_ON_HOST::handle() {
transfer_in_progress = false;
if (present_on_host) {
// it was an upload
printf("%s: upload of %s completed\n", now_str(), name);
chunk->upload_complete(); // create new replicas if needed
} else {
present_on_host = true;
printf("%s: download of %s completed\n", now_str(), name);
chunk->download_complete();
}
}
// the host has failed
//
void HOST::handle() {
set<HOST*>::iterator i = hosts.find(this);
hosts.erase(i);
printf("%s: host %d failed\n", now_str(), id);
set<CHUNK_ON_HOST*>::iterator p;
for (p = chunks.begin(); p != chunks.end(); p++) {
CHUNK_ON_HOST* c = *p;
c->chunk->host_failed(c);
if (c->transfer_in_progress) {
sim.remove(c);
}
delete c;
}
}
CHUNK::CHUNK(META_CHUNK* mc, double s, int index) {
parent = mc;
_is_present_on_server = true;
size = s;
sprintf(name, "%s.%d", parent->name, index);
parent->dfile->pending_init_downloads += REPLICATION_LEVEL;
parent->dfile->disk_usage.sample_inc(size, false);
}
void CHUNK::host_failed(CHUNK_ON_HOST* p) {
set<CHUNK_ON_HOST*>::iterator i = hosts.find(p);
hosts.erase(i);
printf("%s: handling loss of %s\n", now_str(), p->name);
if (_is_present_on_server) {
// if data is on server, make a new replica
//
assign();
} else if (!hosts.empty()) {
start_upload();
} else {
parent->child_unrecoverable();
}
}
void CHUNK::upload_complete() {
if (!_is_present_on_server) {
_is_present_on_server = true;
parent->dfile->disk_usage.sample_inc(
size,
parent->dfile->collecting_stats()
);
}
assign();
if (parent->uploading) {
parent->child_upload_complete();
}
}
void CHUNK::download_complete() {
// we can remove chunk from server if enough replicas
// have downloaded
//
int n=0;
set<CHUNK_ON_HOST*>::iterator i;
for (i=hosts.begin(); i!=hosts.end(); i++) {
CHUNK_ON_HOST* c = *i;
if (c->present_on_host) {
n++;
}
}
if (n >= REPLICATION_LEVEL) {
printf("%s: %s replicated, removing from server\n", now_str(), name);
_is_present_on_server = false;
parent->dfile->disk_usage.sample_inc(
-size,
parent->dfile->collecting_stats()
);
}
if (parent->dfile->pending_init_downloads) {
parent->dfile->pending_init_downloads--;
}
}
void CHUNK::assign() {
if (!_is_present_on_server) return;
while (hosts.size() < REPLICATION_LEVEL) {
if (parent->dfile->unused_hosts.size() == 0) {
die("no more hosts!\n");
}
set<HOST*>::iterator i = parent->dfile->unused_hosts.begin();
HOST* h = *i;
parent->dfile->unused_hosts.erase(i);
CHUNK_ON_HOST *c = new CHUNK_ON_HOST();
sprintf(c->name, "chunk %s on host %d", name, h->id);
printf("%s: assigning chunk %s to host %d\n", now_str(), name, h->id);
c->host = h;
c->chunk = this;
c->t = sim.now + (drand()+.5)*size/DOWNLOAD_BYTES_SEC;
hosts.insert(c);
h->chunks.insert(c);
c->transfer_in_progress = true;
sim.insert(c);
}
}
META_CHUNK::META_CHUNK(
DFILE* d, META_CHUNK* par, double size, int encoding_level, int index
) {
dfile = d;
parent = par;
if (parent) {
sprintf(name, "%s.%d", parent->name, index);
} else {
sprintf(name, "%d", index);
}
if (encoding_level) {
for (int j=0; j<ENCODING_M; j++) {
children.push_back(new META_CHUNK(
d,
this,
size/ENCODING_N,
encoding_level-1,
j
));
}
} else {
for (int j=0; j<ENCODING_M; j++) {
children.push_back(new CHUNK(this, size/ENCODING_N, j));
}
}
}
set<DFILE*> dfiles;
int main() {
#if 0
HOST_ARRIVAL *h = new HOST_ARRIVAL;
h->t = 0;
sim.insert(h);
REPORT_STATS* r = new REPORT_STATS;
r->t = 0;
sim.insert(r);
#endif
for (int i=0; i<100; i++) {
sim.insert(new HOST);
}
DFILE* dfile = new DFILE(1e2);
sim.insert(dfile);
sim.simulate(200*86400);
printf("%s: simulation finished\n", now_str());
dfile->print_stats();
}