
WinObjEx64

Windows Object Explorer 64 bit Plugin architecture overview

Document version 1.1.0 (28 July 2020)

Plugins version 1.1.0

Plugins architecture

Implemented as dynamic link libraries (dll).

Dll requirements

Plugin implemented as dll must export “PluginInit” (without a quotes) routine.
Library must have VERSION_INFO block with FileDescription field set to “WinObjEx64
Plugin V1.1” (case sensitive, without a quotes). This is used by WinObjEx64 to ensure that
given dll is a proper plugin.

2

Plugin initialization

PluginInit is a WinObjEx64 plugin initialization routine with the following prototype

BOOLEAN CALLBACK PluginInit(
 Out PWINOBJEX_PLUGIN PluginData
);

Parameters

PluginData – pointer to WINOBJEX_PLUGIN structure that will be filled by plugin. This
structure describes plugin and gives WinObjEx64 ability to start/stop it execution.

typedef struct _WINOBJEX_PLUGIN {
 BOOLEAN NeedAdmin;
 BOOLEAN NeedDriver;
 BOOLEAN SupportWine;
 BOOLEAN SupportMultipleInstances;
 WINOBJEX_PLUGIN_TYPE Type;
 WINOBJEX_PLUGIN_STATE State;
 WORD MajorVersion;
 WORD MinorVersion;
 ULONG RequiredPluginSystemVersion;
 UCHAR SupportedObjectsIds[PLUGIN_MAX_SUPPORTED_OBJECT_ID];
 WCHAR Name[MAX_PLUGIN_NAME];
 WCHAR Authors[MAX_AUTHORS_NAME];
 WCHAR Description[MAX_PLUGIN_DESCRIPTION];
 pfnStartPlugin StartPlugin;
 pfnStopPlugin StopPlugin;
 pfnStateChangeCallback StateChangeCallback;
 pfnGuiInitCallback GuiInitCallback;
 pfnGuiShutdownCallback GuiShutdownCallback;
} WINOBJEX_PLUGIN, * PWINOBJEX_PLUGIN;

Members

NeedAdmin – a BOOLEAN flag.
Plugin must set it to TRUE if it require administrator rights to execute;

NeedDriver – a BOOLEAN flag.
Plugin must set it to TRUE if it will require helper driver usage;

SupportWine – a BOOLEAN flag.
Plugin must set it to true if it can be used with Wine/WineStaging;

SupportMultipleInstances – a BOOLEAN flag.
Set it to TRUE if plugin can run multiple instances of itself, see Examples for more
information;

3

Type – WINOBJEX_PLUGIN_TYPE enumeration describing plugin type.

typedef enum _WINOBJEX_PLUGIN_TYPE {
 DefaultPlugin = 0,
 ContextPlugin = 1,
 InvalidPluginType
} WINOBJEX_PLUGIN_TYPE;

Where DefaultPlugin is a general purpose plugins (listed by WinObjEx64 in the main menu
Plugins and ContextPlugin is the Windows object type specific plugin, they are displayed in
the context menu of WinObjEx64 main window when user uses popup menu over selected
object in listview or treeview.

State – WINOBJEX_PLUGIN_STATE enumeration describing current plugin state.

typedef enum _WINOBJEX_PLUGIN_STATE {
 PluginInitialization = 0,
 PluginStopped = 1,
 PluginRunning = 2,
 PluginError = 3,
 MaxPluginState
} WINOBJEX_PLUGIN_STATE;

By default at PluginInit this member must be set to PluginInitialization (0). Note that
MaxPluginState is unused.

MajorVersion – Major version field, plugin self defined;

MinorVersion – Minor version field, plugin self defined;

RequiredPluginSystemVersion – Plugin subsystem version that is required by plugin to
work. Currently it is 18712 value;

SupportedObjectsIds – An array of plugin supported object types, this field is only valid
when plugin type is set to ContextPlugin, for list see. Set SupportedObjectsIds[0] to
ObjectTypeAnyType if plugin intended to work with any object types;

Name – Plugin name, maximum 32 chars (including null terminator), use brief name if
possible. The following name is used to identify plugin in WinObjEx64 plugins menu;

Authors – Plugin authors, maximum 32 chars (including null terminator), use brief list if
possible;

Description – is a wide char array with maximum size of 128 elements (including null
terminator) used to keep plugin human readable description. Use brief description if
possible;

StartPlugin – is a pointer to callback routine used by WinObjEx64 to initiate actual plugin
work. This field must be set by plugin during PluginInit execution.

4

Prototype defined as following:

NTSTATUS CALLBACK StartPlugin(
 In PWINOBJEX_PARAM_BLOCK ParamBlock);

The ParamBlock is a pointer to WINOBJEX_PARAM_BLOCK structure that will be passed
from WinObjEx64 to plugin. Detailed description below;

StopPlugin – is a pointer to callback routine used by WinObjEx64 to initiate plugin
shutdown. This field must be set by plugin during PluginInit execution.

Prototype defined as following:

void CALLBACK StopPlugin(
 VOID);

This routine has no parameters;

StateChangeCallback – is a pointer to WinObjEx64 routine that is used to
access/modify plugin State field. Filled by WinObjEx64, plugins must not modify it.

GuiInitCallback – is a pointer to WinObjEx64 routine that should be called during plugin
GUI initialization, it is used to register plugin specific window class.

GuiShutdownCallback – is a pointer to WinObjEx64 routine that should be called during
plugin GUI shutdown, it is used to unregister previously registered plugin window class.

Remarks

It is advised to make a plugin global variable that reference plugin data during PluginInit.

5

Starting a plugin

WinObjEx64 starts plugins by calling StartPlugin routine which is set by plugin during
PluginInit in WINOBJEX_PLUGIN structure.

Prototype defined as following:

NTSTATUS CALLBACK StartPlugin(
 In PWINOBJEX_PARAM_BLOCK ParamBlock);

Parameters

ParamBlock – input parameter, a pointer to WINOBJEX_PARAM_BLOCK structure filled by
WinObjEx64. Contain pointers to various WinObjEx64 helper routines. Note that structure
maybe expanded in the future (growing from tail), for recent version see plugin_def.h in
WinObjEx64 Plugins code directory.

typedef struct _WINOBJEX_PARAM_BLOCK {
 HWND ParentWindow;
 HINSTANCE Instance;
 ULONG_PTR SystemRangeStart;
 ULONG CurrentDPI;
 RTL_OSVERSIONINFOW Version;
 WINOBJEX_PARAM_OBJECT Object;
 pfnReadSystemMemoryEx ReadSystemMemoryEx;
 pfnGetInstructionLength GetInstructionLength;
 pfnOpenNamedObjectByType OpenNamedObjectByType;
} WINOBJEX_PARAM_BLOCK, * PWINOBJEX_PARAM_BLOCK;

Members

ParentWindow – is a handle of WinObjEx64 main window;

Instance – is a handle of WinObjEx64 instance;

SystemRangeStart – is a value describing lower possible system start address;

CurrentDPI – DPI value from WinObjEx64;

Version – is a RTL_OSVERSIONINFOW structure which is filled by WinObjEx64 by calling
ntdll RtlGetVersion function;

Object – is a WINOBJEX_PARAM_OBJECT structure which is filled by WinObjEx64 and
valid only for ContextPlugins;

6

typedef struct _WINOBJEX_PARAM_OBJECT {
 LPWSTR ObjectName;
 LPWSTR ObjectDirectory;
 PVOID Reserved;
} WINOBJEX_PARAM_OBJECT, * PWINOBJEX_PARAM_OBJECT;

Where ObjectName is the currently selected (in WinObjEx64 treev or listview) object
name, ObjectDirectory is a currently browsed object directory. Reserved is a pointer for
future use. It is advised to make a local copy of this structure during StartPlugin call.

ReadSystemMemoryEx – pointer to WinObjEx64 function used to read kernel memory;

GetInstructionLength – pointer to WinObjEx64 length disassembler wrapper used to
determinate instruction length with HDE;

OpenNamedObjectByType – pointer to WinObjEx64 function used to open named objects.

Remarks

If selected plugin supports multiple instances then new instance of it will be created.

If it does not support multiple instances then if plugin reports in a State field that it is
already running (State is set to PluginRunning) then WinObjEx64 will ask user either to
restart plugin or leave it as is. In case if user want to restart plugin, WinObjEx64 will first
try to stop plugin and then start it again.

7

Stopping a plugin

WinObjEx64 stops plugin by calling StopPlugin routine which is set by plugin during
PluginInit in WINOBJEX_PLUGIN structure.

Prototype defined as following:

void CALLBACK StopPlugin(
 VOID);

This routine has no parameters;

Remarks

Upon successful stop plugin must set state to PluginStopped by calling
StateChangeCallback routine of WINOBJEX_PLUGIN.

8

Plugin parameters block (WINOBJEX_PARAM_BLOCK)

This parameters block is filled by WinObjEx64. Below is a prototypes of functions within it.

BOOL CALLBACK ReadSystemMemoryEx(
 In ULONG_PTR Address,
 Inout PVOID Buffer,
 In ULONG BufferSize,
 _Out_opt_ PULONG NumberOfBytesRead);

Read kernel memory to the preallocated buffer.

Parameters

Address – kernel mode address to read;

Buffer – pointer to plugin allocated buffer to receive data;

BufferSize – size of buffer to receive data;

NumberOfBytesRead – optional, return actual number of bytes read upon successful
execution.

Return Value

Return TRUE on success, FALSE on failure.

Remarks

Debug privilege and thus administrative rights are required.

9

UCHAR CALLBACK GetInstructionLength(
 In PVOID ptrCode,
 Out PULONG ptrFlags);

Length disassembler wrapper.

Parameters

ptrCode – pointer to code;

ptrFlags – pointer to ULONG type variable to receive flags returned by disassembler
engine.

Return Value

Return number of bytes describing instruction length of given code buffer.

10

NTSTATUS OpenNamedObjectByType(
 Out HANDLE* ObjectHandle,
 In ULONG TypeIndex,
 In LPWSTR ObjectDirectory,
 _In_opt_ LPWSTR ObjectName,
 In ACCESS_MASK DesiredAccess);

Open object by name and type.

Parameters

ObjectHandle – pointer to receive object handle;

TypeIndex – object type index, for index list see;

ObjectDirectory – parent directory of object;

ObjectName – optional, name of the object. If no ObjectName specified function will open
ObjectDirectory itself;

DesiredAccess – the access to the object.

Return Value

If function succeeded it returns STATUS_SUCCESS. On failure function return appreciate
NTSTATUS value.

11

Examples

1) Example plugin located in Source/Plugins/ExamplePlugin. Implement basic plugin
sceleton. Shows message box as payload.

2) Complex GUI based plugins – Source/Plugins/Sonar and Source/Plugins/ApiSetView.

3) Plugin that support multiple instances – Source/Plugins/ImageScope. This plugin
supports “Section” only type of Windows objects.

12

Object types

Name Value
ObjectTypeDevice 0
ObjectTypeDriver 1
ObjectTypeSection 2
ObjectTypePort 3
ObjectTypeSymbolicLink 4
ObjectTypeKey 5
ObjectTypeEvent 6
ObjectTypeJob 7
ObjectTypeMutant 8
ObjectTypeKeyedEvent 9
ObjectTypeType 10
ObjectTypeDirectory 11
ObjectTypeWinstation 12
ObjectTypeCallback 13
ObjectTypeSemaphore 14
ObjectTypeWaitablePort 15
ObjectTypeTimer 16
ObjectTypeSession 17
ObjectTypeController 18
ObjectTypeProfile 19
ObjectTypeEventPair 20
ObjectTypeDesktop 21
ObjectTypeFile 22
ObjectTypeWMIGuid 23
ObjectTypeDebugObject 24
ObjectTypeIoCompletion 25
ObjectTypeProcess 26
ObjectTypeAdapter 27
ObjectTypeToken 28
ObjectTypeETWRegistration 29
ObjectTypeThread 30
ObjectTypeTmTx 31
ObjectTypeTmTm 32
ObjectTypeTmRm 33
ObjectTypeTmEn 34
ObjectTypePcwObject 35

13

ObjectTypeFltConnPort 36
ObjectTypeFltComnPort 37
ObjectTypePowerRequest 38
ObjectTypeETWConsumer 39
ObjectTypeTpWorkerFactory 40
ObjectTypeComposition 41
ObjectTypeIRTimer 42
ObjectTypeDxgkSharedResource 43
ObjectTypeDxgkSharedSwapChain 44
ObjectTypeDxgkSharedSyncObject 45
ObjectTypeDxgkCurrentDxgProcessObject 46
ObjectTypeDxgkCurrentDxgThreadObject 47
ObjectTypeDxgkDisplayManager 48
ObjectTypeDxgkSharedBundle 49
ObjectTypeDxgkSharedProtectedSession 50
ObjectTypeDxgkComposition 51
ObjectTypeDxgkSharedKeyedMutex 52
ObjectTypeMemoryPartition 53
ObjectTypeRegistryTransaction 54
ObjectTypeDmaAdapter 55
ObjectTypeDmaDomain 56
ObjectTypeUnknown 57
ObjectTypeAnyType 0xfe
ObjectTypeNone 0xff

14

