## Local variables | | | |-|-| | `DX` | First 8-bit variable declared *if no other function is called*
Second 16-bit variable declared *if no other function is called* | | `[bp-1]` | First 8-bit variable declared *otherwise* | | `SI` | First 16-bit variable declared | | `DI` | Second 16-bit variable declared *if other functions are called* | Example: | ASM | Declaration sequence in C | |----------|---------------------------| | `SI` | `int near *var_1;` | | `[bp-1]` | `char var_2;` | | `[bp-2]` | `char var_3;` | ## Signedness | | | |-|-| | `MOV al, var`
`MOV ah, 0`| `var` is *unsigned char* | ## Arithmetic | | | |-|-| | `ADD [m8], imm8` | Only achievable through a C++ method operating on a member? | | `MOV AL, [m8]`
`ADD AL, imm8`
`MOV [m8], AL` | Opposite; *not* an inlined function | ### Arithmetic on a register *after* assigning it to a variable? Assigment is part of the C expression. If it's a comparison, that comparison must be spelled out to silence the `Possibly incorrect assignment` warning. | | | |-|-| | `CALL somefunc`
`MOV ??, AX`
`OR AX, AX`
`JNZ ↑` | `while(( ?? = somefunc() ) != NULL)` | ### `SUB ??, imm` vs. `ADD ??, -imm` `SUB` means that `??` is unsigned. Might require suffixing `imm` with `u` in case it's part of an arithmetic expression that was promoted to `int`. ## `switch` statements * Sequence of the individual cases is identical in both C and ASM * Multiple cases with the same offset in the table, to code that doesn't return? Code was compiled with `-O` ## Pushing byte arguments to functions Borland C++ just pushes the entire word. Will cause IDA to mis-identify certain local variables as `word`s when they aren't. ## Inlining Always worth a try to get rid of a potential macro. Some edge cases don't inline optimally though: * Assignments to a pointer in `SI` – that pointer is moved to `DI`, [clobbering that register](#clobbering-di). Try a [class method](#C++) instead. ## C++ Class methods inline to their ideal representation if all of these are true: * returns `void` || (returns `*this` && is at the first nesting level of inlining) * takes no parameters || takes only built-in, scalar-type parameters Examples: * A class method (first nesting level) calling an overloaded operator (second nesting level) returning `*this` will generate (needless) instructions equivalent to `MOV AX, *this`. Thus, any overloaded `=`, `+=`, `-=`, etc. operator should always return `void`. **Certainty**: See the examples in `9d121c7`. This is what allows us to use custom types with overloaded assignment operators, with the resulting code generation being indistinguishable from equivalent C preprocessor macros. * Returning *anything else* but `void` or `*this` will first store that result in `AX`, leading any branches at the call site to then refer to `AX`. **Certainty**: Maybe Borland (not Turbo) C++ has an optimization option against it? ## Limits of decompilability ### `MOV BX, SP`-style functions, or others with no standard stack frame These almost certainly weren't compiled from C. By disabling stack frames using `#pragma option -k-`, it *might* be possible to still get the exact same code out of Turbo C++ – even though it will most certainly look horrible, and barely more readable than assembly (or even less so), with tons of inline ASM and register pseudovariables. However, it's futile to even try if the function contains one of the following: * A reference to the `DI` register. In that case, Turbo C++ always inserts a `PUSH DI` at the beginning (before the `MOV BX, SP`), and a `POP DI` before returning. **Certainty:** Confirmed through reverse-engineering `TCC.EXE`, no way around it.