ReC98/Research/BLITPERF.CPP

528 lines
13 KiB
C++
Raw Normal View History

#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include "platform/x86real/pc98/blitter.hpp"
#include "platform/x86real/pc98/font.hpp"
#include "platform/x86real/pc98/graph.hpp"
#include "platform/x86real/pc98/grcg.hpp"
#include "platform/x86real/pc98/keyboard.hpp"
#include "platform/x86real/pc98/page.hpp"
#include "platform/x86real/pc98/palette.hpp"
#include "platform/x86real/pc98/vsync.hpp"
#include "th01/main/entity.hpp"
#include "th01/sprites/pellet.csp"
#include "Research/blitperf.csp"
static const pixel_t SPRITE_W = 8;
static const pixel_t SPRITE_H = 8;
static const vc_t SPRITE_COL = 2;
typedef dot_rect_t(16, SPRITE_H) sprite_rect_t;
#ifndef CPU
#error CPU macro not defined
#endif
#define _(x) __(x)
#define __(x) #x
const char BANNER[] = "PC-98 blitting benchmark (" _(CPU) " build, " __DATE__ " " __TIME__ ")";
#undef _
#undef __
void banner_put(void)
{
puts(BANNER);
for(int i = 0; i < (sizeof(BANNER) - 1); i++) {
fputs("\x86\x44", stdout);
}
puts("");
}
// Low-level blitter variations
// ----------------------------
const uint8_t DONT_CHECK_LOW = 0x1;
const uint8_t DONT_CHECK_HIGH = 0x2;
#define checked_row(dc, op) \
_AX = *reinterpret_cast<dots16_t __ds *>(_SI); \
if((dc & DONT_CHECK_LOW) || _AL) { *((dots8_t __es *)(_DI + 0)) op _AL; } \
if((dc & DONT_CHECK_HIGH) || _AH) { *((dots8_t __es *)(_DI + 1)) op _AH; } \
_SI += _DX; \
_DI += ROW_SIZE;
#define DEFINE_CHECKED(func, check) \
void write_16_##func(seg_t plane_seg, const void far* sprite) \
{ \
blitter_body(plane_seg, sprite, checked_row, check, =); \
} \
\
void or_16_##func(seg_t plane_seg, const void far* sprite) \
{ \
blitter_body(plane_seg, sprite, checked_row, check, |=); \
}
DEFINE_CHECKED(check_first, DONT_CHECK_HIGH);
DEFINE_CHECKED(check_second, DONT_CHECK_LOW);
DEFINE_CHECKED(check_both, 0);
// That assignment to DX might have an impact, who knows!1!!
#define movs_body(ins, size, plane_seg, sprite) { \
register int16_t loops_unrolled = blit_state.loops_unrolled; \
_SI = FP_OFF(sprite); \
_SI += blit_state.sprite_offset; \
_DI = blit_state.vo; \
_BX = blit_state.loops_remainder; \
_asm { push ds; } \
_DS = FP_SEG(sprite); \
_ES = plane_seg; \
static_assert(UNROLL_H == 8); \
switch(_BX) { \
case 0: do { asm { ins }; _SI += (2 - size);_DI += (ROW_SIZE - size); \
case 7: asm { ins }; _SI += (2 - size);_DI += (ROW_SIZE - size); \
case 6: asm { ins }; _SI += (2 - size);_DI += (ROW_SIZE - size); \
case 5: asm { ins }; _SI += (2 - size);_DI += (ROW_SIZE - size); \
case 4: asm { ins }; _SI += (2 - size);_DI += (ROW_SIZE - size); \
case 3: asm { ins }; _SI += (2 - size);_DI += (ROW_SIZE - size); \
case 2: asm { ins }; _SI += (2 - size);_DI += (ROW_SIZE - size); \
case 1: asm { ins }; _SI += (2 - size);_DI += (ROW_SIZE - size); \
/* */} while(--loops_unrolled > 0); \
} \
_asm { pop ds; } \
}
void movsb(seg_t plane_seg, const void far* sprite)
{
movs_body(movsb, sizeof(uint8_t), plane_seg, sprite);
}
void movsw(seg_t plane_seg, const void far* sprite)
{
movs_body(movsw, sizeof(uint16_t), plane_seg, sprite);
}
void naive_write(
seg_t plane_seg, const void far* sprite, vram_byte_amount_t vram_w
)
{
const dots8_t far* sprite_p = (
reinterpret_cast<const dots8_t far *>(sprite) + blit_state.sprite_offset
);
const pixel_t h = (
(blit_state.loops_unrolled * UNROLL_H) + blit_state.loops_remainder
);
vram_offset_t vo = blit_state.vo;
vram_byte_amount_t stride = (ROW_SIZE - vram_w);
GRCGStaticColor<SPRITE_COL> grcg(GC_RMW);
for(pixel_t y = 0; y < h; y++) {
for(vram_byte_amount_t x = 0; x < vram_w; x++) {
pokeb(plane_seg, vo, sprite_p[x]);
vo++;
}
sprite_p += blit_state.sprite_w;
vo += stride;
}
}
void naive_write_8(seg_t plane_seg, const void far* sprite)
{
naive_write(plane_seg, sprite, sizeof(dots8_t));
}
void naive_write_16(seg_t plane_seg, const void far* sprite)
{
naive_write(plane_seg, sprite, sizeof(dots16_t));
}
// ----------------------------
// Blitting methods tested
// -----------------------
inline void rotate(sprite_rect_t& shifted, screen_x_t& left) {
_CX = left;
_CX &= (BYTE_DOTS - 1);
static_assert(SPRITE_H == 8);
shifted[0] = __rotr__(sPELLET[0][0][0], _CX);
shifted[1] = __rotr__(sPELLET[0][0][1], _CX);
shifted[2] = __rotr__(sPELLET[0][0][2], _CX);
shifted[3] = __rotr__(sPELLET[0][0][3], _CX);
shifted[4] = __rotr__(sPELLET[0][0][4], _CX);
shifted[5] = __rotr__(sPELLET[0][0][5], _CX);
shifted[6] = __rotr__(sPELLET[0][0][6], _CX);
shifted[7] = __rotr__(sPELLET[0][0][7], _CX);
}
void near grcg_blit_preshifted(const Blitter __ds* b, screen_x_t left)
{
b->write(SEG_PLANE_B, &sPELLET[0][left & (BYTE_DOTS - 1)]);
}
void near grcg_rotate_and_blit(const Blitter __ds* b, screen_x_t left)
{
sprite_rect_t shifted;
rotate(shifted, left);
b->write(SEG_PLANE_B, &shifted);
}
void near raw_blit_preshifted(const Blitter __ds* b, screen_x_t left)
{
const sprite_rect_t& sprite = sPELLET[0][left & (BYTE_DOTS - 1)];
b->or(SEG_PLANE_B, &sprite);
b->or(SEG_PLANE_R, &sprite);
b->or(SEG_PLANE_G, &sprite);
b->or(SEG_PLANE_E, &sprite);
}
void near raw_rotate_and_blit(const Blitter __ds* b, screen_x_t left)
{
sprite_rect_t shifted;
rotate(shifted, left); b->or(SEG_PLANE_B, &shifted);
rotate(shifted, left); b->or(SEG_PLANE_R, &shifted);
rotate(shifted, left); b->or(SEG_PLANE_G, &shifted);
rotate(shifted, left); b->or(SEG_PLANE_E, &shifted);
}
// -----------------------
// Test runs
// ---------
typedef void (* test_func_t)(const Blitter __ds*, screen_x_t);
struct Sprite : public entity_topleft_t {
void init() {
left = ((rand() % (RES_X + (SPRITE_W * 2))) - SPRITE_W);
top = ((rand() % (RES_Y + (SPRITE_H * 2))) - SPRITE_H);
}
void move() {
left += 1;
top += 1;
if(left >= RES_X) {
left = -SPRITE_W;
}
if(top >= RES_Y) {
top = -SPRITE_H;
}
}
};
Sprite sprites[14500];
enum option_type_t {
OPT_SPRITE_COUNT,
OPT_DURATION,
OPT_SPRITE_COL,
OPT_COUNT,
OPT_INVALID = -1
};
struct Option {
char cmd_c;
const char* desc;
uint16_t val;
uint16_t min;
uint16_t max;
};
struct Test {
Option opt[OPT_COUNT];
unsigned int slowdown;
uint16_t frame;
bool skip_locked;
void frame_delay(unsigned int frames);
void sprite_loop(test_func_t func);
void run(bool grcg, const char* prompt, test_func_t func);
void run(bool grcg_only);
};
void Test::frame_delay(unsigned int frames)
{
if(vsync_count_16 != 0) {
++slowdown;
} else {
while(vsync_count_16 < frames) {}
}
if(frame != 0) {
printf("\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b");
}
printf(
"\xEB\xA0 %3d/%3d \xEB\xA1 %6lu", slowdown, (frame + 1), vsync_count_32
);
vsync_count_16 = 0;
}
void graph_clear(void)
{
GRCGStaticColor<static_cast<vc_t>(0)> grcg(GC_TDW);
_ES = SEG_PLANE_B;
_DI = 0;
#if (CPU == 386)
_CX = (PLANE_SIZE / sizeof(uint32_t));
asm { cld; db 0x66, 0xF3, 0xAB; } // REP STOSD
#else
_CX = (PLANE_SIZE / sizeof(uint16_t));
asm { cld; rep stosw; }
#endif
}
void Test::sprite_loop(test_func_t func)
{
Sprite near* sprite_p = sprites;
for(uint16_t i = 0; i < opt[OPT_SPRITE_COUNT].val; i++) {
const Blitter __ds* b = blitter_init_clip_lrtb(
(sprite_p->left >> BYTE_BITS),
sprite_p->top,
((SPRITE_W + PRESHIFT) / BYTE_DOTS),
SPRITE_H
);
if(b) {
func(b, sprite_p->left);
}
sprite_p->move();
sprite_p++;
}
}
void Test::run(bool grcg, const char* prompt, test_func_t func)
{
page_t page_back = 0;
// Make sure we start at the very beginning of a frame
while(vsync_count_32 < 1) {}
vsync_count_16 = 0;
vsync_count_32 = 0;
slowdown = 0;
printf("%s ", prompt);
for(frame = 0; frame < opt[OPT_DURATION].val; frame++) {
page_show(1 - page_back);
page_access(page_back);
graph_clear();
if(grcg) {
GRCG grcg(GC_RMW);
grcg.setcolor(opt[OPT_SPRITE_COL].val);
sprite_loop(func);
} else {
sprite_loop(func);
}
const uint8_t skip_pressed = (peekb(0, KEYGROUP_1) & K1_TAB);
if(peekb(0, KEYGROUP_2) & K2_Q) {
exit(0);
}
if(skip_pressed && !skip_locked) {
// Run the remaining simulation steps to ensure a consistent
// starting point for each test
while(++frame < opt[OPT_DURATION].val) {
Sprite near* sprite_p = sprites;
for(uint16_t i = 0; i < opt[OPT_SPRITE_COUNT].val; i++) {
sprite_p->move();
sprite_p++;
}
}
} else {
frame_delay(1);
}
skip_locked = skip_pressed;
page_back ^= 1;
}
}
void Test::run(bool grcg_only)
{
/* */printf("\xEB\x9F" " GRCG ");
run(true, "preshifted", grcg_blit_preshifted);
run(true, ", runtime-shifted", grcg_rotate_and_blit);
if(!grcg_only) {
printf("\n\xEB\x9F" "4-plane ");
run(false, "preshifted", raw_blit_preshifted);
run(false, ", runtime-shifted", raw_rotate_and_blit);
}
puts("");
}
// ---------
Test t = {{
{ 's', "Sprite count", 2000, 1, (sizeof(sprites) / sizeof(sprites[0])) },
{ 'd', "Frames per test", 100, 1, 999 },
{ 'c', "GRCG sprite color", 2, 0x1, 0xF },
}};
const Palette4 PALETTE = {
0x0, 0x0, 0x0,
0x0, 0x0, 0x7,
0x7, 0x0, 0x0,
0x7, 0x0, 0x7,
0x0, 0x7, 0x0,
0x0, 0x7, 0x7,
0x7, 0x7, 0x0,
0x7, 0x7, 0x7,
0x3, 0x3, 0x3,
0x0, 0x0, 0x4,
0x4, 0x0, 0x0,
0x4, 0x0, 0x4,
0x0, 0x4, 0x0,
0x0, 0x4, 0x4,
0x4, 0x4, 0x0,
0x4, 0x4, 0x4,
};
int option_invalid(const char* argv0, const char* arg)
{
printf("%s: invalid option: %s\n", argv0, arg);
return 1;
}
int __cdecl main(int argc, const char *argv[])
{
// Command line parsing
// --------------------
Option* cur_opt = nullptr;
for(int arg_i = 1; arg_i < argc; arg_i++) {
const char* cur_arg = argv[arg_i];
if(cur_opt != nullptr) {
uint32_t val_long;
if(cur_arg[0] == '\0') {
printf("%s: missing option for /%c\n", argv[0], cur_opt->cmd_c);
return 2;
} else if(sscanf(cur_arg, "%lu", &val_long) != 1) {
printf(
"%s: invalid value for /%c: %s\n",
argv[0], cur_opt->cmd_c, cur_arg
);
return 3;
} else if((val_long < cur_opt->min) || (val_long > cur_opt->max)) {
printf(
"%s: value for /%c (%s) out of range (must be between %u and %u, got %s)\n",
argv[0],
cur_opt->cmd_c,
cur_opt->desc,
cur_opt->min,
cur_opt->max,
cur_arg
);
return 4;
}
cur_opt->val = val_long;
cur_opt = nullptr;
} else if((cur_arg[0] == '-') || (cur_arg[0] == '/')) {
if(cur_arg[2] != '\0') {
return option_invalid(argv[0], cur_arg);
}
if(cur_arg[1] == '?') {
banner_put();
printf("Usage: %s", argv[0]);
{for(int i = 0; i < OPT_COUNT; i++) {
printf(" [/%c %d]", t.opt[i].cmd_c, t.opt[i].val);
}}
puts("\n");
{for(int i = 0; i < OPT_COUNT; i++) {
printf(
"\t/%c\t%s (%u-%u)\n",
t.opt[i].cmd_c,
t.opt[i].desc,
t.opt[i].min,
t.opt[i].max
);
}}
return 0;
}
cur_opt = nullptr;
{for(int i = 0; i < OPT_COUNT; i++) {
if(tolower(cur_arg[1]) == tolower(t.opt[i].cmd_c)) {
cur_opt = &t.opt[i];
}
}}
if(cur_opt == nullptr) {
return option_invalid(argv[0], cur_arg);
}
}
}
// --------------------
printf("%s", "\x1B*");
banner_put();
{for(int i = 0; i < OPT_COUNT; i++) {
printf("%s%s: %u", ((i >= 1) ? ", " : ""), t.opt[i].desc, t.opt[i].val);
}}
puts("\nCall with /? for options, hold Q to quit, or TAB to skip to the next test.\n");
srand(0);
{for(uint16_t i = 0; i < t.opt[OPT_SPRITE_COUNT].val; i++) {
sprites[i].init();
}}
graph_show_16color_400line();
palette_show(PALETTE);
vsync_init();
extern Blitter BLITTER_FUNCS[];
blit_func_t orig_dots8_write = BLITTER_FUNCS[ 8 / BYTE_DOTS].write;
puts("Unchecked, MOV:");
t.run(false);
puts("Unchecked, MOVS:");
BLITTER_FUNCS[ 8 / BYTE_DOTS].write = movsb;
BLITTER_FUNCS[16 / BYTE_DOTS].write = movsw;
t.run(true);
BLITTER_FUNCS[ 8 / BYTE_DOTS].write = orig_dots8_write;
puts("Checking first byte:");
BLITTER_FUNCS[16 / BYTE_DOTS].write = write_16_check_first;
BLITTER_FUNCS[16 / BYTE_DOTS].or = or_16_check_first;
t.run(false);
puts("Checking second byte:");
BLITTER_FUNCS[16 / BYTE_DOTS].write = write_16_check_second;
BLITTER_FUNCS[16 / BYTE_DOTS].or = or_16_check_second;
t.run(false);
puts("Checking both bytes:");
BLITTER_FUNCS[16 / BYTE_DOTS].write = write_16_check_both;
BLITTER_FUNCS[16 / BYTE_DOTS].or = or_16_check_both;
t.run(false);
puts("Unchecked, unbatched, naive pure C implementation (no explicit register use):");
BLITTER_FUNCS[ 8 / BYTE_DOTS].write = naive_write_8;
BLITTER_FUNCS[16 / BYTE_DOTS].write = naive_write_16;
t.run(true);
return 0;
}
void blitperf_startup(void)
{
font_gaiji_write(
sBLITPERF, (sizeof(sBLITPERF) / sizeof(sBLITPERF[0])), 0x21
);
// Hide cursor
fprintf(stdout, "\x1B[>5h");
}
void blitperf_exit(void)
{
// Flush input
_AX = 0x0C00;
geninterrupt(0x21);
// Show cursor
fprintf(stdout, "\x1B[>5l");
}
#pragma startup blitperf_startup
#pragma exit blitperf_exit