RapidFuzz/bench/benchmark_fuzz.py

120 lines
3.2 KiB
Python

# todo combine benchmarks of scorers into common code base
import timeit
import pandas
def benchmark(name, func, setup, lengths, count):
print(f"starting {name}")
start = timeit.default_timer()
results = []
for length in lengths:
test = timeit.Timer(func, setup=setup.format(length, count))
results.append(min(test.timeit(number=1) for _ in range(7)) / count)
stop = timeit.default_timer()
print(f"finished {name}, Runtime: ", stop - start)
return results
setup = """
from rapidfuzz import fuzz as rfuzz
from fuzzywuzzy import fuzz
import string
import random
random.seed(18)
characters = string.ascii_letters + string.digits + string.whitespace + string.punctuation
a = ''.join(random.choice(characters) for _ in range({0}))
b_list = [''.join(random.choice(characters) for _ in range({0})) for _ in range({1})]
"""
lengths = list(range(1, 512, 2))
count = 1000
def scorer_benchmark(funcname):
time_rapidfuzz = benchmark(
"rapidfuzz", f"[rfuzz.{funcname}(a, b) for b in b_list]", setup, lengths, count
)
time_fuzzywuzzy = benchmark(
"fuzzywuzzy", f"[fuzz.{funcname}(a, b) for b in b_list]", setup, lengths, count
)
df = pandas.DataFrame(
data={
"length": lengths,
"rapidfuzz": time_rapidfuzz,
"fuzzywuzzy": time_fuzzywuzzy,
}
)
df.to_csv(f"results/{funcname}.csv", sep=",", index=False)
scorer_benchmark("ratio")
scorer_benchmark("partial_ratio")
scorer_benchmark("token_sort_ratio")
scorer_benchmark("token_set_ratio")
scorer_benchmark("partial_token_sort_ratio")
scorer_benchmark("partial_token_set_ratio")
scorer_benchmark("WRatio")
# token_ratio is unique to RapidFuzz
time_token_ratio = benchmark(
"token_ratio",
"[rfuzz.token_ratio(a, b, processor=None) for b in b_list]",
setup,
lengths,
count,
)
# this gets very slow, so only benchmark it for smaller values
time_token_ratio_simple = benchmark(
"fuzzywuzzy",
"[max(rfuzz.token_sort_ratio(a, b, processor=None), rfuzz.token_set_ratio(a, b, processor=None)) for b in b_list]",
setup,
lengths,
count,
)
df = pandas.DataFrame(
data={
"length": lengths,
"token_ratio": time_token_ratio,
"max(token_sort_ratio, token_set_ratio)": time_token_ratio_simple,
}
)
df.to_csv("results/token_ratio.csv", sep=",", index=False)
# partial_token_ratio is unique to RapidFuzz
time_partial_token_ratio = benchmark(
"token_ratio",
"[rfuzz.partial_token_ratio(a, b, processor=None) for b in b_list]",
setup,
lengths,
count,
)
# this gets very slow, so only benchmark it for smaller values
time_partial_token_ratio_simple = benchmark(
"fuzzywuzzy",
(
"[max(rfuzz.partial_token_sort_ratio(a, b, processor=None), "
"rfuzz.partial_token_set_ratio(a, b, processor=None)) for b in b_list]"
),
setup,
lengths,
count,
)
df = pandas.DataFrame(
data={
"length": lengths,
"partial_token_ratio": time_partial_token_ratio,
"max(partial_token_sort_ratio, partial_token_set_ratio)": time_partial_token_ratio_simple,
}
)
df.to_csv("results/partial_token_ratio.csv", sep=",", index=False)