106 lines
3.5 KiB
Python
106 lines
3.5 KiB
Python
#!/usr/bin/env python
|
|
# -*- coding: utf-8 -*-
|
|
|
|
import unittest
|
|
import pytest
|
|
|
|
from rapidfuzz import string_metric
|
|
|
|
|
|
def test_empty_string():
|
|
"""
|
|
when both strings are empty this is a perfect match
|
|
"""
|
|
assert string_metric.levenshtein("", "") == 0
|
|
assert string_metric.levenshtein("", "", weights=(1, 1, 0)) == 0
|
|
assert string_metric.levenshtein("", "", weights=(1, 1, 2)) == 0
|
|
assert string_metric.levenshtein("", "", weights=(1, 1, 5)) == 0
|
|
assert string_metric.levenshtein("", "", weights=(3, 7, 5)) == 0
|
|
|
|
|
|
def test_cross_type_matching():
|
|
"""
|
|
strings should always be interpreted in the same way
|
|
"""
|
|
assert string_metric.levenshtein("aaaa", "aaaa") == 0
|
|
assert string_metric.levenshtein("aaaa", ["a", "a", "a", "a"]) == 0
|
|
# todo add support in pure python
|
|
assert string_metric.levenshtein("aaaa", [ord("a"), ord("a"), "a", "a"]) == 0
|
|
|
|
|
|
def test_word_error_rate():
|
|
"""
|
|
it should be possible to use levenshtein to implement a word error rate
|
|
"""
|
|
assert string_metric.levenshtein(["aaaaa", "bbbb"], ["aaaaa", "bbbb"]) == 0
|
|
assert string_metric.levenshtein(["aaaaa", "bbbb"], ["aaaaa", "cccc"]) == 1
|
|
|
|
|
|
def test_simple_unicode_tests():
|
|
"""
|
|
some very simple tests using unicode with scorers
|
|
to catch relatively obvious implementation errors
|
|
"""
|
|
s1 = "ÁÄ"
|
|
s2 = "ABCD"
|
|
assert string_metric.levenshtein(s1, s2) == 4 # 2 sub + 2 ins
|
|
assert string_metric.levenshtein(s1, s2, weights=(1, 1, 0)) == 2 # 2 sub + 2 ins
|
|
assert (
|
|
string_metric.levenshtein(s1, s2, weights=(1, 1, 2)) == 6
|
|
) # 2 del + 4 ins / 2 sub + 2 ins
|
|
assert string_metric.levenshtein(s1, s2, weights=(1, 1, 5)) == 6 # 2 del + 4 ins
|
|
assert string_metric.levenshtein(s1, s2, weights=(1, 7, 5)) == 12 # 2 sub + 2 ins
|
|
assert string_metric.levenshtein(s2, s1, weights=(1, 7, 5)) == 24 # 2 sub + 2 del
|
|
|
|
assert string_metric.levenshtein(s1, s1) == 0
|
|
assert string_metric.levenshtein(s1, s1, weights=(1, 1, 0)) == 0
|
|
assert string_metric.levenshtein(s1, s1, weights=(1, 1, 2)) == 0
|
|
assert string_metric.levenshtein(s1, s1, weights=(1, 1, 5)) == 0
|
|
assert string_metric.levenshtein(s1, s1, weights=(3, 7, 5)) == 0
|
|
|
|
|
|
def test_levenshtein_editops():
|
|
"""
|
|
basic test for levenshtein_editops
|
|
"""
|
|
assert string_metric.levenshtein_editops("0", "") == [("delete", 0, 0)]
|
|
assert string_metric.levenshtein_editops("", "0") == [("insert", 0, 0)]
|
|
|
|
assert string_metric.levenshtein_editops("00", "0") == [("delete", 1, 1)]
|
|
assert string_metric.levenshtein_editops("0", "00") == [("insert", 1, 1)]
|
|
|
|
assert string_metric.levenshtein_editops("qabxcd", "abycdf") == [
|
|
("delete", 0, 0),
|
|
("replace", 3, 2),
|
|
("insert", 6, 5),
|
|
]
|
|
assert string_metric.levenshtein_editops("Lorem ipsum.", "XYZLorem ABC iPsum") == [
|
|
("insert", 0, 0),
|
|
("insert", 0, 1),
|
|
("insert", 0, 2),
|
|
("insert", 6, 9),
|
|
("insert", 6, 10),
|
|
("insert", 6, 11),
|
|
("insert", 6, 12),
|
|
("replace", 7, 14),
|
|
("delete", 11, 18),
|
|
]
|
|
|
|
|
|
def test_help():
|
|
"""
|
|
test that all help texts can be printed without throwing an exception,
|
|
since they are implemented in C++ aswell
|
|
"""
|
|
help(string_metric.levenshtein)
|
|
help(string_metric.normalized_levenshtein)
|
|
help(string_metric.levenshtein_editops)
|
|
help(string_metric.hamming)
|
|
help(string_metric.normalized_hamming)
|
|
help(string_metric.jaro_similarity)
|
|
help(string_metric.jaro_winkler_similarity)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|