90 lines
3.1 KiB
Python
90 lines
3.1 KiB
Python
# todo combine benchmarks of scorers into common code base
|
|
import timeit
|
|
import pandas
|
|
import numpy as np
|
|
|
|
def benchmark(name, func, setup, lengths, count):
|
|
print(f"starting {name}")
|
|
start = timeit.default_timer()
|
|
results = []
|
|
for length in lengths:
|
|
test = timeit.Timer(func, setup=setup.format(length, count))
|
|
results.append(min(test.timeit(number=1) for _ in range(7)) / count)
|
|
stop = timeit.default_timer()
|
|
print(f"finished {name}, Runtime: ", stop - start)
|
|
return results
|
|
|
|
setup ="""
|
|
from rapidfuzz import fuzz as rfuzz
|
|
from fuzzywuzzy import fuzz
|
|
import string
|
|
import random
|
|
random.seed(18)
|
|
characters = string.ascii_letters + string.digits + string.whitespace + string.punctuation
|
|
a = ''.join(random.choice(characters) for _ in range({0}))
|
|
b_list = [''.join(random.choice(characters) for _ in range({0})) for _ in range({1})]
|
|
"""
|
|
|
|
lengths = list(range(1,512,2))
|
|
count = 1000
|
|
|
|
def scorer_benchmark(funcname):
|
|
time_rapidfuzz = benchmark("rapidfuzz",
|
|
f'[rfuzz.{funcname}(a, b) for b in b_list]',
|
|
setup, lengths, count)
|
|
|
|
time_fuzzywuzzy = benchmark("fuzzywuzzy",
|
|
f'[fuzz.{funcname}(a, b) for b in b_list]',
|
|
setup, lengths, count)
|
|
|
|
df = pandas.DataFrame(data={
|
|
"length": lengths,
|
|
"rapidfuzz": time_rapidfuzz,
|
|
"fuzzywuzzy": time_fuzzywuzzy,
|
|
})
|
|
|
|
df.to_csv(f"results/{funcname}.csv", sep=',',index=False)
|
|
|
|
scorer_benchmark("ratio")
|
|
scorer_benchmark("partial_ratio")
|
|
scorer_benchmark("token_sort_ratio")
|
|
scorer_benchmark("token_set_ratio")
|
|
scorer_benchmark("partial_token_sort_ratio")
|
|
scorer_benchmark("partial_token_set_ratio")
|
|
scorer_benchmark("WRatio")
|
|
|
|
# token_ratio is unique to RapidFuzz
|
|
time_token_ratio = benchmark("token_ratio",
|
|
f'[rfuzz.token_ratio(a, b, processor=None) for b in b_list]',
|
|
setup, lengths, count)
|
|
|
|
# this gets very slow, so only benchmark it for smaller values
|
|
time_token_ratio_simple = benchmark("fuzzywuzzy",
|
|
f'[max(rfuzz.token_sort_ratio(a, b, processor=None), rfuzz.token_set_ratio(a, b, processor=None)) for b in b_list]',
|
|
setup, lengths, count)
|
|
|
|
df = pandas.DataFrame(data={
|
|
"length": lengths,
|
|
"token_ratio": time_token_ratio,
|
|
"max(token_sort_ratio, token_set_ratio)": time_token_ratio_simple,
|
|
})
|
|
|
|
df.to_csv(f"results/token_ratio.csv", sep=',',index=False)
|
|
|
|
# partial_token_ratio is unique to RapidFuzz
|
|
time_partial_token_ratio = benchmark("token_ratio",
|
|
f'[rfuzz.partial_token_ratio(a, b, processor=None) for b in b_list]',
|
|
setup, lengths, count)
|
|
|
|
# this gets very slow, so only benchmark it for smaller values
|
|
time_partial_token_ratio_simple = benchmark("fuzzywuzzy",
|
|
f'[max(rfuzz.partial_token_sort_ratio(a, b, processor=None), rfuzz.partial_token_set_ratio(a, b, processor=None)) for b in b_list]',
|
|
setup, lengths, count)
|
|
|
|
df = pandas.DataFrame(data={
|
|
"length": lengths,
|
|
"partial_token_ratio": time_partial_token_ratio,
|
|
"max(partial_token_sort_ratio, partial_token_set_ratio)": time_partial_token_ratio_simple,
|
|
})
|
|
|
|
df.to_csv(f"results/partial_token_ratio.csv", sep=',',index=False) |