import timeit import numpy as np import pandas def benchmark(name, func, setup, lengths, count): print(f"starting {name}") start = timeit.default_timer() results = [] for length in lengths: test = timeit.Timer(func, setup=setup.format(length, count)) results.append(min(test.timeit(number=1) for _ in range(7)) / count) stop = timeit.default_timer() print(f"finished {name}, Runtime: ", stop - start) return results setup = """ from rapidfuzz import string_metric import Levenshtein import polyleven import edlib import editdistance import string import random random.seed(18) characters = string.ascii_letters + string.digits + string.whitespace + string.punctuation a = ''.join(random.choice(characters) for _ in range({0})) b_list = [''.join(random.choice(characters) for _ in range({0})) for _ in range({1})] """ lengths = list(range(1, 512, 2)) count = 2000 time_rapidfuzz = benchmark( "rapidfuzz", "[string_metric.levenshtein(a, b) for b in b_list]", setup, lengths, count, ) time_polyleven = benchmark( "polyleven", "[polyleven.levenshtein(a, b) for b in b_list]", setup, lengths, count ) # this gets very slow, so only benchmark it for smaller values time_python_levenshtein = ( benchmark( "python-Levenshtein", "[Levenshtein.distance(a, b) for b in b_list]", setup, list(range(1, 256, 2)), count, ) + [np.NaN] * 128 ) time_edlib = benchmark( "edlib", "[edlib.align(a, b) for b in b_list]", setup, lengths, count ) time_editdistance = benchmark( "editdistance", "[editdistance.eval(a, b) for b in b_list]", setup, lengths, count ) df = pandas.DataFrame( data={ "length": lengths, "rapidfuzz": time_rapidfuzz, "polyleven": time_polyleven, "python-Levenshtein": time_python_levenshtein, "edlib": time_edlib, "editdistance": time_editdistance, } ) df.to_csv("results/levenshtein_uniform.csv", sep=",", index=False)