# todo combine benchmarks of scorers into common code base import timeit import numpy as np import pandas def benchmark(name, func, setup, lengths, count): print(f"starting {name}") start = timeit.default_timer() results = [] from tqdm import tqdm for length in tqdm(lengths): test = timeit.Timer(func, setup=setup.format(length, count)) results.append(min(test.timeit(number=1) for _ in range(7)) / count) stop = timeit.default_timer() print(f"finished {name}, Runtime: ", stop - start) return results setup = """ from rapidfuzz.distance import JaroWinkler import jellyfish import string import random random.seed(18) characters = string.ascii_letters + string.digits + string.whitespace + string.punctuation a = ''.join(random.choice(characters) for _ in range({0})) b_list = [''.join(random.choice(characters) for _ in range({0})) for _ in range({1})] """ lengths = list(range(1, 256, 4)) count = 4000 time_rapidfuzz = benchmark( "rapidfuzz", "[JaroWinkler.similarity(a, b) for b in b_list]", setup, lengths, count ) # this gets very slow, so only benchmark it for smaller values time_jellyfish = ( benchmark( "jellyfish", "[jellyfish.jaro_winkler_similarity(a, b) for b in b_list]", setup, list(range(1, 128, 4)), count, ) + [np.NaN] * 32 ) df = pandas.DataFrame( data={ "length": lengths, "rapidfuzz": time_rapidfuzz, "jellyfish": time_jellyfish, } ) df.to_csv("results/jaro_winkler.csv", sep=",", index=False)