# todo combine benchmarks of scorers into common code base import timeit import pandas import numpy as np def benchmark(name, func, setup, lengths, count): print(f"starting {name}") start = timeit.default_timer() results = [] from tqdm import tqdm for length in tqdm(lengths): test = timeit.Timer(func, setup=setup.format(length, count)) results.append(min(test.timeit(number=1) for _ in range(7)) / count) stop = timeit.default_timer() print(f"finished {name}, Runtime: ", stop - start) return results setup =""" from rapidfuzz.distance import Jaro import jellyfish import string import random random.seed(18) characters = string.ascii_letters + string.digits + string.whitespace + string.punctuation a = ''.join(random.choice(characters) for _ in range({0})) b_list = [''.join(random.choice(characters) for _ in range({0})) for _ in range({1})] """ lengths = list(range(1,256,4)) count = 4000 time_rapidfuzz = benchmark("rapidfuzz", '[Jaro.similarity(a, b) for b in b_list]', setup, lengths, count) # this gets very slow, so only benchmark it for smaller values time_jellyfish = benchmark("jellyfish", '[jellyfish.jaro_similarity(a, b) for b in b_list]', setup, list(range(1,128,4)), count) + [np.NaN] * 32 df = pandas.DataFrame(data={ "length": lengths, "rapidfuzz": time_rapidfuzz, "jellyfish": time_jellyfish, }) df.to_csv("results/jaro.csv", sep=',',index=False)