RapidFuzz/bench/benchmark_jaro.py

61 lines
1.5 KiB
Python
Raw Normal View History

2022-10-02 04:28:17 +00:00
# todo combine benchmarks of scorers into common code base
import timeit
2022-10-02 08:06:27 +00:00
2022-10-02 04:28:17 +00:00
import numpy as np
2022-10-02 08:06:27 +00:00
import pandas
2022-10-02 04:28:17 +00:00
def benchmark(name, func, setup, lengths, count):
print(f"starting {name}")
start = timeit.default_timer()
results = []
from tqdm import tqdm
2022-10-02 08:24:00 +00:00
2022-10-02 04:28:17 +00:00
for length in tqdm(lengths):
test = timeit.Timer(func, setup=setup.format(length, count))
results.append(min(test.timeit(number=1) for _ in range(7)) / count)
stop = timeit.default_timer()
print(f"finished {name}, Runtime: ", stop - start)
return results
2022-10-02 08:24:00 +00:00
setup = """
2022-10-02 04:28:17 +00:00
from rapidfuzz.distance import Jaro
import jellyfish
import string
import random
random.seed(18)
characters = string.ascii_letters + string.digits + string.whitespace + string.punctuation
a = ''.join(random.choice(characters) for _ in range({0}))
b_list = [''.join(random.choice(characters) for _ in range({0})) for _ in range({1})]
"""
2022-10-02 08:24:00 +00:00
lengths = list(range(1, 256, 4))
2022-10-02 04:28:17 +00:00
count = 4000
2022-10-02 08:24:00 +00:00
time_rapidfuzz = benchmark(
"rapidfuzz", "[Jaro.similarity(a, b) for b in b_list]", setup, lengths, count
)
2022-10-02 04:28:17 +00:00
# this gets very slow, so only benchmark it for smaller values
2022-10-02 08:24:00 +00:00
time_jellyfish = (
benchmark(
"jellyfish",
"[jellyfish.jaro_similarity(a, b) for b in b_list]",
setup,
list(range(1, 128, 4)),
count,
)
+ [np.NaN] * 32
)
df = pandas.DataFrame(
data={
"length": lengths,
"rapidfuzz": time_rapidfuzz,
"jellyfish": time_jellyfish,
}
)
df.to_csv("results/jaro.csv", sep=",", index=False)