64 lines
1.9 KiB
Python
64 lines
1.9 KiB
Python
|
import timeit
|
||
|
import pandas
|
||
|
import numpy as np
|
||
|
|
||
|
def benchmark(name, func, setup, lengths, count):
|
||
|
print(f"starting {name}")
|
||
|
start = timeit.default_timer()
|
||
|
results = []
|
||
|
for length in lengths:
|
||
|
test = timeit.Timer(func, setup=setup.format(length, count))
|
||
|
results.append(min(test.timeit(number=1) for _ in range(7)) / count)
|
||
|
stop = timeit.default_timer()
|
||
|
print(f"finished {name}, Runtime: ", stop - start)
|
||
|
return results
|
||
|
|
||
|
setup ="""
|
||
|
from rapidfuzz import string_metric
|
||
|
import Levenshtein
|
||
|
import polyleven
|
||
|
import edlib
|
||
|
import editdistance
|
||
|
import string
|
||
|
import random
|
||
|
random.seed(18)
|
||
|
characters = string.ascii_letters + string.digits + string.whitespace + string.punctuation
|
||
|
a = ''.join(random.choice(characters) for _ in range({0}))
|
||
|
b_list = [''.join(random.choice(characters) for _ in range({0})) for _ in range({1})]
|
||
|
"""
|
||
|
|
||
|
lengths = list(range(1,512,2))
|
||
|
count = 2000
|
||
|
|
||
|
time_rapidfuzz = benchmark("rapidfuzz",
|
||
|
'[string_metric.levenshtein(a, b) for b in b_list]',
|
||
|
setup, lengths, count)
|
||
|
|
||
|
time_polyleven = benchmark("polyleven",
|
||
|
'[polyleven.levenshtein(a, b) for b in b_list]',
|
||
|
setup, lengths, count)
|
||
|
|
||
|
# this gets very slow, so only benchmark it for smaller values
|
||
|
time_python_levenshtein = benchmark("python-Levenshtein",
|
||
|
'[Levenshtein.distance(a, b) for b in b_list]',
|
||
|
setup, list(range(1,256,2)), count) + [np.NaN] * 128
|
||
|
|
||
|
time_edlib = benchmark("edlib",
|
||
|
'[edlib.align(a, b) for b in b_list]',
|
||
|
setup, lengths, count)
|
||
|
|
||
|
time_editdistance = benchmark("editdistance",
|
||
|
'[editdistance.eval(a, b) for b in b_list]',
|
||
|
setup, lengths, count)
|
||
|
|
||
|
df = pandas.DataFrame(data={
|
||
|
"length": lengths,
|
||
|
"rapidfuzz": time_rapidfuzz,
|
||
|
"polyleven": time_polyleven,
|
||
|
"python-Levenshtein": time_python_levenshtein,
|
||
|
"edlib": time_edlib,
|
||
|
"editdistance": time_editdistance
|
||
|
})
|
||
|
|
||
|
df.to_csv("results/levenshtein_uniform.csv", sep=',',index=False)
|