2022-11-02 20:28:45 +00:00
|
|
|
"""
|
|
|
|
common parts of the test suite for rapidfuzz
|
|
|
|
"""
|
2024-03-05 22:53:48 +00:00
|
|
|
|
2023-04-12 09:33:00 +00:00
|
|
|
from __future__ import annotations
|
|
|
|
|
2023-04-11 22:06:52 +00:00
|
|
|
from dataclasses import dataclass
|
2023-04-11 23:32:42 +00:00
|
|
|
from math import isnan
|
2023-04-11 22:06:52 +00:00
|
|
|
from typing import Any
|
2022-11-02 20:28:45 +00:00
|
|
|
|
2022-12-24 13:45:58 +00:00
|
|
|
import pytest
|
2022-11-02 20:28:45 +00:00
|
|
|
|
2023-04-12 22:41:48 +00:00
|
|
|
from rapidfuzz import process_cpp, process_py
|
2022-12-04 22:30:11 +00:00
|
|
|
|
2023-10-21 17:47:18 +00:00
|
|
|
try:
|
|
|
|
from pandas import NA as pandas_NA
|
2023-10-21 20:24:44 +00:00
|
|
|
except BaseException:
|
2023-10-21 17:47:18 +00:00
|
|
|
pandas_NA = None
|
2022-12-04 22:30:11 +00:00
|
|
|
|
2023-10-21 20:24:44 +00:00
|
|
|
|
2023-04-16 14:34:20 +00:00
|
|
|
def _get_scorer_flags_py(scorer: Any, scorer_kwargs: dict[str, Any]) -> tuple[int, int]:
|
|
|
|
params = getattr(scorer, "_RF_ScorerPy", None)
|
|
|
|
if params is not None:
|
|
|
|
flags = params["get_scorer_flags"](**scorer_kwargs)
|
|
|
|
return (flags["worst_score"], flags["optimal_score"])
|
|
|
|
return (0, 100)
|
|
|
|
|
|
|
|
|
2022-12-04 22:30:11 +00:00
|
|
|
def is_none(s):
|
2023-10-21 17:47:18 +00:00
|
|
|
if s is None or s is pandas_NA:
|
2022-12-04 22:30:11 +00:00
|
|
|
return True
|
|
|
|
|
|
|
|
if isinstance(s, float) and isnan(s):
|
|
|
|
return True
|
|
|
|
|
|
|
|
return False
|
|
|
|
|
2022-11-02 21:46:23 +00:00
|
|
|
|
2023-12-28 17:18:16 +00:00
|
|
|
def call_and_maybe_catch(call, *args, catch_exceptions=False, **kwargs):
|
|
|
|
if not catch_exceptions:
|
|
|
|
return call(*args, **kwargs)
|
|
|
|
|
2023-04-29 16:18:53 +00:00
|
|
|
try:
|
|
|
|
return call(*args, **kwargs)
|
|
|
|
except AssertionError as e:
|
|
|
|
raise e
|
|
|
|
except Exception as e:
|
|
|
|
return e
|
|
|
|
|
|
|
|
|
|
|
|
def compare_exceptions(e1, e2):
|
2023-08-16 14:32:33 +00:00
|
|
|
try:
|
|
|
|
return str(e1) == str(e2)
|
|
|
|
except Exception:
|
|
|
|
return False
|
2023-04-29 16:18:53 +00:00
|
|
|
|
|
|
|
|
2023-12-28 17:18:16 +00:00
|
|
|
def scorer_tester(scorer, s1, s2, catch_exceptions=False, **kwargs):
|
2023-04-29 16:18:53 +00:00
|
|
|
score1 = call_and_maybe_catch(scorer, s1, s2, **kwargs)
|
|
|
|
exception = isinstance(score1, Exception)
|
2022-11-02 20:28:45 +00:00
|
|
|
|
2023-04-12 22:41:48 +00:00
|
|
|
temp_kwargs = kwargs.copy()
|
|
|
|
process_kwargs = {}
|
2022-11-02 22:27:26 +00:00
|
|
|
|
2023-04-12 22:41:48 +00:00
|
|
|
if "processor" in kwargs:
|
|
|
|
process_kwargs["processor"] = kwargs["processor"]
|
|
|
|
del temp_kwargs["processor"]
|
|
|
|
|
|
|
|
if "score_cutoff" in kwargs:
|
|
|
|
process_kwargs["score_cutoff"] = kwargs["score_cutoff"]
|
|
|
|
del temp_kwargs["score_cutoff"]
|
|
|
|
|
|
|
|
if temp_kwargs:
|
|
|
|
process_kwargs["scorer_kwargs"] = temp_kwargs
|
|
|
|
|
2023-12-28 17:18:16 +00:00
|
|
|
extractOne_res1 = call_and_maybe_catch(
|
|
|
|
process_cpp.extractOne, s1, [s2], catch_exceptions=catch_exceptions, scorer=scorer, **process_kwargs
|
|
|
|
)
|
|
|
|
extractOne_res2 = call_and_maybe_catch(
|
|
|
|
process_py.extractOne, s1, [s2], catch_exceptions=catch_exceptions, scorer=scorer, **process_kwargs
|
|
|
|
)
|
|
|
|
extract_res1 = call_and_maybe_catch(
|
|
|
|
process_cpp.extract, s1, [s2], catch_exceptions=catch_exceptions, scorer=scorer, **process_kwargs
|
|
|
|
)
|
|
|
|
extract_res2 = call_and_maybe_catch(
|
|
|
|
process_py.extract, s1, [s2], catch_exceptions=catch_exceptions, scorer=scorer, **process_kwargs
|
|
|
|
)
|
|
|
|
extract_iter_res1 = call_and_maybe_catch(
|
|
|
|
list, process_cpp.extract_iter(s1, [s2], scorer=scorer, **process_kwargs), catch_exceptions=catch_exceptions
|
|
|
|
)
|
|
|
|
extract_iter_res2 = call_and_maybe_catch(
|
|
|
|
list, process_py.extract_iter(s1, [s2], scorer=scorer, **process_kwargs), catch_exceptions=catch_exceptions
|
|
|
|
)
|
2023-04-29 16:18:53 +00:00
|
|
|
|
|
|
|
if exception:
|
|
|
|
assert compare_exceptions(extractOne_res1, score1)
|
|
|
|
assert compare_exceptions(extractOne_res2, score1)
|
|
|
|
assert compare_exceptions(extract_res1, score1)
|
|
|
|
assert compare_exceptions(extract_res2, score1)
|
|
|
|
assert compare_exceptions(extract_iter_res1, score1)
|
|
|
|
assert compare_exceptions(extract_iter_res2, score1)
|
|
|
|
elif is_none(s1) or is_none(s2):
|
2022-12-04 22:30:11 +00:00
|
|
|
assert extractOne_res1 is None
|
|
|
|
assert extractOne_res2 is None
|
|
|
|
assert extract_res1 == []
|
|
|
|
assert extract_res2 == []
|
2023-04-29 16:18:53 +00:00
|
|
|
assert extract_iter_res1 == []
|
|
|
|
assert extract_iter_res2 == []
|
2022-12-04 22:30:11 +00:00
|
|
|
elif kwargs.get("score_cutoff") is not None:
|
2023-04-16 14:34:20 +00:00
|
|
|
worst_score, optimal_score = _get_scorer_flags_py(scorer, process_kwargs.get("scorer_kwargs", {}))
|
|
|
|
lowest_score_worst = optimal_score > worst_score
|
|
|
|
is_filtered = score1 < kwargs["score_cutoff"] if lowest_score_worst else score1 > kwargs["score_cutoff"]
|
|
|
|
|
|
|
|
if is_filtered:
|
|
|
|
assert extractOne_res1 is None
|
|
|
|
assert extractOne_res2 is None
|
|
|
|
assert extract_res1 == []
|
|
|
|
assert extract_res2 == []
|
|
|
|
assert extract_iter_res1 == []
|
|
|
|
assert extract_iter_res2 == []
|
|
|
|
else:
|
|
|
|
assert pytest.approx(score1) == extractOne_res1[1]
|
|
|
|
assert pytest.approx(score1) == extractOne_res2[1]
|
|
|
|
assert pytest.approx(score1) == extract_res1[0][1]
|
|
|
|
assert pytest.approx(score1) == extract_res2[0][1]
|
|
|
|
assert pytest.approx(score1) == extract_iter_res1[0][1]
|
|
|
|
assert pytest.approx(score1) == extract_iter_res2[0][1]
|
2022-12-04 22:30:11 +00:00
|
|
|
else:
|
|
|
|
assert pytest.approx(score1) == extractOne_res1[1]
|
|
|
|
assert pytest.approx(score1) == extractOne_res2[1]
|
|
|
|
assert pytest.approx(score1) == extract_res1[0][1]
|
|
|
|
assert pytest.approx(score1) == extract_res2[0][1]
|
2022-12-24 13:45:58 +00:00
|
|
|
assert pytest.approx(score1) == extract_iter_res1[0][1]
|
|
|
|
assert pytest.approx(score1) == extract_iter_res2[0][1]
|
2022-12-04 22:30:11 +00:00
|
|
|
|
2023-04-16 21:42:55 +00:00
|
|
|
try:
|
|
|
|
import numpy as np
|
|
|
|
except Exception:
|
|
|
|
np = None
|
|
|
|
|
|
|
|
if np is not None:
|
2023-12-28 17:18:16 +00:00
|
|
|
cdist_scores1 = call_and_maybe_catch(
|
|
|
|
process_cpp.cdist, [s1], [s2], catch_exceptions=catch_exceptions, scorer=scorer, **process_kwargs
|
|
|
|
)
|
|
|
|
cdist_scores2 = call_and_maybe_catch(
|
|
|
|
process_py.cdist, [s1], [s2], catch_exceptions=catch_exceptions, scorer=scorer, **process_kwargs
|
|
|
|
)
|
2023-04-16 21:42:55 +00:00
|
|
|
# probably trigger multi match / simd implementations
|
2023-12-28 17:18:16 +00:00
|
|
|
cdist_scores3 = call_and_maybe_catch(
|
|
|
|
process_cpp.cdist, [s1] * 2, [s2] * 4, catch_exceptions=catch_exceptions, scorer=scorer, **process_kwargs
|
|
|
|
)
|
|
|
|
cdist_scores4 = call_and_maybe_catch(
|
|
|
|
process_py.cdist, [s1] * 2, [s2] * 4, catch_exceptions=catch_exceptions, scorer=scorer, **process_kwargs
|
|
|
|
)
|
2023-04-29 16:18:53 +00:00
|
|
|
|
|
|
|
if exception:
|
|
|
|
assert compare_exceptions(cdist_scores1, score1)
|
|
|
|
assert compare_exceptions(cdist_scores2, score1)
|
|
|
|
assert compare_exceptions(cdist_scores3, score1)
|
|
|
|
assert compare_exceptions(cdist_scores4, score1)
|
|
|
|
else:
|
|
|
|
assert np.all(np.isclose(cdist_scores1, score1))
|
|
|
|
assert np.all(np.isclose(cdist_scores2, score1))
|
|
|
|
assert np.all(np.isclose(cdist_scores3, score1))
|
|
|
|
assert np.all(np.isclose(cdist_scores4, score1))
|
2023-04-16 21:42:55 +00:00
|
|
|
|
2023-04-29 16:18:53 +00:00
|
|
|
if exception:
|
|
|
|
raise score1
|
2022-12-04 22:30:11 +00:00
|
|
|
|
2022-11-02 20:28:45 +00:00
|
|
|
return score1
|
|
|
|
|
2022-11-02 21:46:23 +00:00
|
|
|
|
2023-12-28 17:18:16 +00:00
|
|
|
def symmetric_scorer_tester(scorer, s1, s2, catch_exceptions=False, **kwargs):
|
|
|
|
score1 = call_and_maybe_catch(scorer_tester, scorer, s1, s2, catch_exceptions=catch_exceptions, **kwargs)
|
|
|
|
score2 = call_and_maybe_catch(scorer_tester, scorer, s2, s1, catch_exceptions=catch_exceptions, **kwargs)
|
2023-04-29 16:18:53 +00:00
|
|
|
|
|
|
|
if isinstance(score1, Exception):
|
|
|
|
assert compare_exceptions(score1, score2)
|
|
|
|
raise score1
|
|
|
|
|
2022-11-03 23:21:20 +00:00
|
|
|
assert pytest.approx(score1) == score2
|
|
|
|
return score1
|
|
|
|
|
2023-04-11 23:32:42 +00:00
|
|
|
|
2023-04-11 22:06:52 +00:00
|
|
|
@dataclass
|
|
|
|
class Scorer:
|
|
|
|
distance: Any
|
|
|
|
similarity: Any
|
|
|
|
normalized_distance: Any
|
|
|
|
normalized_similarity: Any
|
2023-08-16 14:32:33 +00:00
|
|
|
editops: Any
|
|
|
|
opcodes: Any
|
2023-04-11 22:06:52 +00:00
|
|
|
|
2022-11-03 23:21:20 +00:00
|
|
|
|
2022-11-02 20:28:45 +00:00
|
|
|
class GenericScorer:
|
2023-04-11 22:06:52 +00:00
|
|
|
def __init__(self, py_scorers, cpp_scorers, get_scorer_flags):
|
2023-04-12 10:14:35 +00:00
|
|
|
self.py_scorers = py_scorers
|
2023-04-11 22:06:52 +00:00
|
|
|
self.cpp_scorers = cpp_scorers
|
|
|
|
self.scorers = self.py_scorers + self.cpp_scorers
|
|
|
|
|
|
|
|
def validate_attrs(func1, func2):
|
|
|
|
assert hasattr(func1, "_RF_ScorerPy")
|
|
|
|
assert hasattr(func2, "_RF_ScorerPy")
|
|
|
|
assert func1.__name__ == func2.__name__
|
|
|
|
assert func1.__qualname__ == func2.__qualname__
|
|
|
|
assert func1.__doc__ == func2.__doc__
|
|
|
|
|
|
|
|
for scorer in self.scorers:
|
|
|
|
validate_attrs(scorer.distance, self.scorers[0].distance)
|
|
|
|
validate_attrs(scorer.similarity, self.scorers[0].similarity)
|
2023-04-12 10:24:53 +00:00
|
|
|
validate_attrs(scorer.normalized_distance, self.scorers[0].normalized_distance)
|
|
|
|
validate_attrs(scorer.normalized_similarity, self.scorers[0].normalized_similarity)
|
2023-04-11 22:06:52 +00:00
|
|
|
|
|
|
|
for scorer in self.cpp_scorers:
|
|
|
|
assert hasattr(scorer.distance, "_RF_Scorer")
|
|
|
|
assert hasattr(scorer.similarity, "_RF_Scorer")
|
|
|
|
assert hasattr(scorer.normalized_distance, "_RF_Scorer")
|
|
|
|
assert hasattr(scorer.normalized_similarity, "_RF_Scorer")
|
|
|
|
|
2022-11-03 23:21:20 +00:00
|
|
|
self.get_scorer_flags = get_scorer_flags
|
|
|
|
|
2023-12-28 17:18:16 +00:00
|
|
|
def _editops(self, s1, s2, catch_exceptions=False, **kwargs):
|
|
|
|
results = [
|
|
|
|
call_and_maybe_catch(scorer.editops, s1, s2, catch_exceptions=catch_exceptions, **kwargs)
|
|
|
|
for scorer in self.scorers
|
|
|
|
]
|
2023-08-16 14:32:33 +00:00
|
|
|
|
|
|
|
for result in results:
|
|
|
|
assert compare_exceptions(result, results[0])
|
|
|
|
|
|
|
|
if any(isinstance(result, Exception) for result in results):
|
|
|
|
raise results[0]
|
|
|
|
|
|
|
|
return results[0]
|
|
|
|
|
2023-12-28 17:18:16 +00:00
|
|
|
def _opcodes(self, s1, s2, catch_exceptions=False, **kwargs):
|
|
|
|
results = [
|
|
|
|
call_and_maybe_catch(scorer.opcodes, s1, s2, catch_exceptions=catch_exceptions, **kwargs)
|
|
|
|
for scorer in self.scorers
|
|
|
|
]
|
2023-08-16 14:32:33 +00:00
|
|
|
|
|
|
|
for result in results:
|
|
|
|
assert compare_exceptions(result, results[0])
|
|
|
|
|
|
|
|
if any(isinstance(result, Exception) for result in results):
|
|
|
|
raise results[0]
|
|
|
|
|
|
|
|
return results[0]
|
|
|
|
|
2023-12-28 17:18:16 +00:00
|
|
|
def _distance(self, s1, s2, catch_exceptions=False, **kwargs):
|
2022-11-03 23:21:20 +00:00
|
|
|
symmetric = self.get_scorer_flags(s1, s2, **kwargs)["symmetric"]
|
2023-04-16 14:34:20 +00:00
|
|
|
tester = symmetric_scorer_tester if symmetric else scorer_tester
|
2022-11-03 23:21:20 +00:00
|
|
|
|
2023-12-28 17:18:16 +00:00
|
|
|
scores = [
|
|
|
|
call_and_maybe_catch(tester, scorer.distance, s1, s2, catch_exceptions=catch_exceptions, **kwargs)
|
|
|
|
for scorer in self.scorers
|
|
|
|
]
|
2023-04-29 16:18:53 +00:00
|
|
|
|
|
|
|
if any(isinstance(score, Exception) for score in scores):
|
|
|
|
for score in scores:
|
|
|
|
assert compare_exceptions(score, scores[0])
|
|
|
|
raise scores[0]
|
|
|
|
|
|
|
|
scores = sorted(scores)
|
2023-04-11 22:06:52 +00:00
|
|
|
assert pytest.approx(scores[0]) == scores[-1]
|
|
|
|
return scores[0]
|
2022-11-03 23:21:20 +00:00
|
|
|
|
2023-12-28 17:18:16 +00:00
|
|
|
def _similarity(self, s1, s2, catch_exceptions=False, **kwargs):
|
2022-11-03 23:21:20 +00:00
|
|
|
symmetric = self.get_scorer_flags(s1, s2, **kwargs)["symmetric"]
|
2023-04-16 14:34:20 +00:00
|
|
|
tester = symmetric_scorer_tester if symmetric else scorer_tester
|
2022-11-03 23:21:20 +00:00
|
|
|
|
2024-03-05 23:04:18 +00:00
|
|
|
scores = [
|
|
|
|
call_and_maybe_catch(tester, scorer.similarity, s1, s2, catch_exceptions=catch_exceptions, **kwargs)
|
|
|
|
for scorer in self.scorers
|
|
|
|
]
|
2023-04-29 16:18:53 +00:00
|
|
|
|
|
|
|
if any(isinstance(score, Exception) for score in scores):
|
|
|
|
for score in scores:
|
|
|
|
assert compare_exceptions(score, scores[0])
|
|
|
|
raise scores[0]
|
|
|
|
|
|
|
|
scores = sorted(scores)
|
2023-04-11 22:06:52 +00:00
|
|
|
assert pytest.approx(scores[0]) == scores[-1]
|
|
|
|
return scores[0]
|
2022-11-03 23:21:20 +00:00
|
|
|
|
2023-12-28 17:18:16 +00:00
|
|
|
def _normalized_distance(self, s1, s2, catch_exceptions=False, **kwargs):
|
2022-11-03 23:21:20 +00:00
|
|
|
symmetric = self.get_scorer_flags(s1, s2, **kwargs)["symmetric"]
|
2023-04-16 14:34:20 +00:00
|
|
|
tester = symmetric_scorer_tester if symmetric else scorer_tester
|
2022-11-03 23:21:20 +00:00
|
|
|
|
2023-12-28 17:18:16 +00:00
|
|
|
scores = [
|
|
|
|
call_and_maybe_catch(
|
|
|
|
tester, scorer.normalized_distance, s1, s2, catch_exceptions=catch_exceptions, **kwargs
|
|
|
|
)
|
|
|
|
for scorer in self.scorers
|
|
|
|
]
|
2023-04-29 16:18:53 +00:00
|
|
|
|
|
|
|
if any(isinstance(score, Exception) for score in scores):
|
|
|
|
for score in scores:
|
|
|
|
assert compare_exceptions(score, scores[0])
|
|
|
|
raise scores[0]
|
|
|
|
|
|
|
|
scores = sorted(scores)
|
2023-04-11 22:06:52 +00:00
|
|
|
assert pytest.approx(scores[0]) == scores[-1]
|
|
|
|
return scores[0]
|
2022-11-03 23:21:20 +00:00
|
|
|
|
2023-12-28 17:18:16 +00:00
|
|
|
def _normalized_similarity(self, s1, s2, catch_exceptions=False, **kwargs):
|
2022-11-03 23:21:20 +00:00
|
|
|
symmetric = self.get_scorer_flags(s1, s2, **kwargs)["symmetric"]
|
2023-04-16 14:34:20 +00:00
|
|
|
tester = symmetric_scorer_tester if symmetric else scorer_tester
|
2022-11-03 23:21:20 +00:00
|
|
|
|
2023-04-29 16:18:53 +00:00
|
|
|
scores = [
|
2023-12-28 17:18:16 +00:00
|
|
|
call_and_maybe_catch(
|
|
|
|
tester, scorer.normalized_similarity, s1, s2, catch_exceptions=catch_exceptions, **kwargs
|
|
|
|
)
|
|
|
|
for scorer in self.scorers
|
2023-04-29 16:18:53 +00:00
|
|
|
]
|
|
|
|
|
|
|
|
if any(isinstance(score, Exception) for score in scores):
|
|
|
|
for score in scores:
|
|
|
|
assert compare_exceptions(score, scores[0])
|
|
|
|
raise scores[0]
|
|
|
|
|
|
|
|
scores = sorted(scores)
|
2023-04-11 22:06:52 +00:00
|
|
|
assert pytest.approx(scores[0]) == scores[-1]
|
|
|
|
return scores[0]
|
2022-11-03 23:21:20 +00:00
|
|
|
|
2023-12-28 17:18:16 +00:00
|
|
|
def _validate(self, s1, s2, catch_exceptions=False, **kwargs):
|
2022-11-03 23:21:20 +00:00
|
|
|
# todo requires more complex test handling
|
|
|
|
# score_cutoff = kwargs.get("score_cutoff")
|
|
|
|
kwargs = {k: v for k, v in kwargs.items() if k != "score_cutoff"}
|
|
|
|
|
|
|
|
maximum = self.get_scorer_flags(s1, s2, **kwargs)["maximum"]
|
2023-04-29 16:18:53 +00:00
|
|
|
|
2023-12-28 17:18:16 +00:00
|
|
|
dist = call_and_maybe_catch(self._distance, s1, s2, catch_exceptions=catch_exceptions, **kwargs)
|
|
|
|
sim = call_and_maybe_catch(self._similarity, s1, s2, catch_exceptions=catch_exceptions, **kwargs)
|
|
|
|
norm_dist = call_and_maybe_catch(self._normalized_distance, s1, s2, catch_exceptions=catch_exceptions, **kwargs)
|
|
|
|
norm_sim = call_and_maybe_catch(
|
|
|
|
self._normalized_similarity, s1, s2, catch_exceptions=catch_exceptions, **kwargs
|
|
|
|
)
|
2023-04-29 16:18:53 +00:00
|
|
|
|
|
|
|
if isinstance(dist, Exception):
|
|
|
|
assert compare_exceptions(dist, sim)
|
|
|
|
assert compare_exceptions(dist, norm_dist)
|
|
|
|
assert compare_exceptions(dist, norm_sim)
|
|
|
|
raise dist
|
|
|
|
|
2022-11-03 23:21:20 +00:00
|
|
|
assert pytest.approx(dist) == maximum - sim
|
|
|
|
if maximum != 0:
|
|
|
|
assert pytest.approx(dist / maximum) == norm_dist
|
|
|
|
assert pytest.approx(sim / maximum) == norm_sim
|
|
|
|
else:
|
|
|
|
assert pytest.approx(0.0) == norm_dist
|
|
|
|
assert pytest.approx(1.0) == norm_sim
|
2022-11-02 20:28:45 +00:00
|
|
|
|
2023-04-29 16:18:53 +00:00
|
|
|
return dist, sim, norm_dist, norm_sim
|
|
|
|
|
2023-12-28 17:18:16 +00:00
|
|
|
def distance(self, s1, s2, catch_exceptions=False, **kwargs):
|
|
|
|
dist, _, _, _ = self._validate(s1, s2, catch_exceptions=catch_exceptions, **kwargs)
|
2023-04-29 16:18:53 +00:00
|
|
|
if "score_cutoff" not in kwargs:
|
|
|
|
return dist
|
|
|
|
|
2023-12-28 17:18:16 +00:00
|
|
|
return self._distance(s1, s2, catch_exceptions=catch_exceptions, **kwargs)
|
2022-11-02 20:28:45 +00:00
|
|
|
|
2023-12-28 17:18:16 +00:00
|
|
|
def similarity(self, s1, s2, catch_exceptions=False, **kwargs):
|
|
|
|
_, sim, _, _ = self._validate(s1, s2, catch_exceptions=catch_exceptions, **kwargs)
|
2023-04-29 16:18:53 +00:00
|
|
|
if "score_cutoff" not in kwargs:
|
|
|
|
return sim
|
|
|
|
|
2023-12-28 17:18:16 +00:00
|
|
|
return self._similarity(s1, s2, catch_exceptions=catch_exceptions, **kwargs)
|
2022-11-02 20:28:45 +00:00
|
|
|
|
2023-12-28 17:18:16 +00:00
|
|
|
def normalized_distance(self, s1, s2, catch_exceptions=False, **kwargs):
|
2022-12-04 22:30:11 +00:00
|
|
|
if not is_none(s1) and not is_none(s2):
|
2023-12-28 17:18:16 +00:00
|
|
|
_, _, norm_dist, _ = self._validate(s1, s2, catch_exceptions=catch_exceptions, **kwargs)
|
2023-04-29 16:18:53 +00:00
|
|
|
# todo we should be able to handle this in a nicer way
|
|
|
|
if "score_cutoff" not in kwargs:
|
|
|
|
return norm_dist
|
2023-12-28 17:18:16 +00:00
|
|
|
return self._normalized_distance(s1, s2, catch_exceptions=catch_exceptions, **kwargs)
|
2022-11-02 20:28:45 +00:00
|
|
|
|
2023-12-28 17:18:16 +00:00
|
|
|
def normalized_similarity(self, s1, s2, catch_exceptions=False, **kwargs):
|
2022-12-04 22:30:11 +00:00
|
|
|
if not is_none(s1) and not is_none(s2):
|
2023-12-28 17:18:16 +00:00
|
|
|
_, _, _, norm_sim = self._validate(s1, s2, catch_exceptions=catch_exceptions, **kwargs)
|
2023-04-29 16:18:53 +00:00
|
|
|
if "score_cutoff" not in kwargs:
|
|
|
|
return norm_sim
|
2023-12-28 17:18:16 +00:00
|
|
|
return self._normalized_similarity(s1, s2, catch_exceptions=catch_exceptions, **kwargs)
|
2023-08-16 14:32:33 +00:00
|
|
|
|
2023-12-28 17:18:16 +00:00
|
|
|
def editops(self, s1, s2, catch_exceptions=False, **kwargs):
|
|
|
|
editops_ = self._editops(s1, s2, catch_exceptions=catch_exceptions, **kwargs)
|
|
|
|
opcodes_ = self._opcodes(s1, s2, catch_exceptions=catch_exceptions, **kwargs)
|
2023-08-16 14:32:33 +00:00
|
|
|
assert opcodes_.as_editops() == editops_
|
|
|
|
assert opcodes_ == editops_.as_opcodes()
|
|
|
|
return editops_
|
|
|
|
|
2023-12-28 17:18:16 +00:00
|
|
|
def opcodes(self, s1, s2, catch_exceptions=False, **kwargs):
|
|
|
|
editops_ = self._editops(s1, s2, catch_exceptions=catch_exceptions, **kwargs)
|
|
|
|
opcodes_ = self._opcodes(s1, s2, catch_exceptions=catch_exceptions, **kwargs)
|
2023-08-16 14:32:33 +00:00
|
|
|
assert opcodes_.as_editops() == editops_
|
|
|
|
assert opcodes_ == editops_.as_opcodes()
|
|
|
|
return opcodes_
|