93 lines
2.9 KiB
Python
Executable File
93 lines
2.9 KiB
Python
Executable File
"""
|
|
Copyright (c) 2019-present NAVER Corp.
|
|
MIT License
|
|
"""
|
|
|
|
# -*- coding: utf-8 -*-
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from collections import OrderedDict
|
|
import torch.nn.init as init
|
|
from torchutil import *
|
|
|
|
from basenet.vgg16_bn import vgg16_bn
|
|
|
|
|
|
class double_conv(nn.Module):
|
|
def __init__(self, in_ch, mid_ch, out_ch):
|
|
super(double_conv, self).__init__()
|
|
self.conv = nn.Sequential(
|
|
nn.Conv2d(in_ch + mid_ch, mid_ch, kernel_size=1),
|
|
nn.BatchNorm2d(mid_ch),
|
|
nn.ReLU(inplace=True),
|
|
nn.Conv2d(mid_ch, out_ch, kernel_size=3, padding=1),
|
|
nn.BatchNorm2d(out_ch),
|
|
nn.ReLU(inplace=True)
|
|
)
|
|
|
|
def forward(self, x):
|
|
x = self.conv(x)
|
|
return x
|
|
|
|
|
|
class CRAFT(nn.Module):
|
|
def __init__(self, pretrained=True, freeze=False):
|
|
super(CRAFT, self).__init__()
|
|
|
|
""" Base network """
|
|
# self.net = vgg16_bn(pretrained, freeze)
|
|
# self.net.load_state_dict(copyStateDict(torch.load('vgg16_bn-6c64b313.pth')))
|
|
# self.basenet = self.net
|
|
self.basenet = vgg16_bn(pretrained, freeze)
|
|
""" U network """
|
|
self.upconv1 = double_conv(1024, 512, 256)
|
|
self.upconv2 = double_conv(512, 256, 128)
|
|
self.upconv3 = double_conv(256, 128, 64)
|
|
self.upconv4 = double_conv(128, 64, 32)
|
|
|
|
num_class = 2
|
|
self.conv_cls = nn.Sequential(
|
|
nn.Conv2d(32, 32, kernel_size=3, padding=1), nn.ReLU(inplace=True),
|
|
nn.Conv2d(32, 32, kernel_size=3, padding=1), nn.ReLU(inplace=True),
|
|
nn.Conv2d(32, 16, kernel_size=3, padding=1), nn.ReLU(inplace=True),
|
|
nn.Conv2d(16, 16, kernel_size=1), nn.ReLU(inplace=True),
|
|
nn.Conv2d(16, num_class, kernel_size=1),
|
|
)
|
|
|
|
init_weights(self.upconv1.modules())
|
|
init_weights(self.upconv2.modules())
|
|
init_weights(self.upconv3.modules())
|
|
init_weights(self.upconv4.modules())
|
|
init_weights(self.conv_cls.modules())
|
|
|
|
def forward(self, x):
|
|
""" Base network """
|
|
sources = self.basenet(x)
|
|
|
|
""" U network """
|
|
y = torch.cat([sources[0], sources[1]], dim=1)
|
|
y = self.upconv1(y)
|
|
|
|
y = F.interpolate(y, size=sources[2].size()[2:], mode='bilinear', align_corners=False)
|
|
y = torch.cat([y, sources[2]], dim=1)
|
|
y = self.upconv2(y)
|
|
|
|
y = F.interpolate(y, size=sources[3].size()[2:], mode='bilinear', align_corners=False)
|
|
y = torch.cat([y, sources[3]], dim=1)
|
|
y = self.upconv3(y)
|
|
|
|
y = F.interpolate(y, size=sources[4].size()[2:], mode='bilinear', align_corners=False)
|
|
y = torch.cat([y, sources[4]], dim=1)
|
|
feature = self.upconv4(y)
|
|
|
|
y = self.conv_cls(feature)
|
|
|
|
return y.permute(0, 2, 3, 1), feature
|
|
|
|
|
|
if __name__ == '__main__':
|
|
model = CRAFT(pretrained=True).cuda()
|
|
output, _ = model(torch.randn(1, 3, 768, 768).cuda())
|
|
print(output.shape)
|