Kindai-OCR/test.py

350 lines
12 KiB
Python

"""
Copyright (c) 2019-present NAVER Corp.
MIT License
"""
# -*- coding: cp932 -*-
import sys
import os
import time
import argparse
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.autograd import Variable
from PIL import Image, ImageDraw, ImageFont
from utils import dataIterator, load_dict, gen_sample, load_mapping
from encoder_decoder import Encoder_Decoder
import cv2
from skimage import io
import numpy as np
import craft_utils
import imgproc
import file_utils
import json
import zipfile
import xml.etree.cElementTree as ET
import xml.dom.minidom as minidom
import codecs
from craft import CRAFT
from collections import OrderedDict
def copyStateDict(state_dict):
if list(state_dict.keys())[0].startswith("module"):
start_idx = 1
else:
start_idx = 0
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = ".".join(k.split(".")[start_idx:])
new_state_dict[name] = v
return new_state_dict
def str2bool(v):
return v.lower() in ("yes", "y", "true", "t", "1")
def pil2cv(imgPIL):
imgCV_RGB = np.array(imgPIL, dtype = np.uint8)
imgCV_BGR = np.array(imgPIL)[:, :, ::-1]
return imgCV_BGR
def cv2pil(imgCV):
imgCV_RGB = imgCV[:, :, ::-1]
imgPIL = Image.fromarray(imgCV_RGB)
return imgPIL
def cv2_putChar(draw, char, x, y, fontPIL, colorRGB):
draw.text(xy = (x,y), text = char, fill = colorRGB, font = fontPIL)
def cv2_putText_1(img, text, org, fontFace, fontScale, color):
min_x, max_x, min_y, max_y = org
imgPIL = cv2pil(img)
draw = ImageDraw.Draw(imgPIL)
fontPIL = ImageFont.truetype(font = fontFace, size = fontScale)
if max_x - min_x >= max_y- min_y:
#horizontal line
y = max_y
x = min_x
for char in text:
cv2_putChar(draw, char, x, y, fontPIL, color )
w, h = draw.textsize(char, font = fontPIL)
x += w + 10
else:
#vertical line
y = min_y
x = max_x - 10
for char in text:
cv2_putChar(draw, char, x, y, fontPIL, color )
w, h = draw.textsize(char, font = fontPIL)
y += h + 10
imgCV = pil2cv(imgPIL)
return imgCV
parser = argparse.ArgumentParser(description='Kindai document Recognition')
#params for text detection
parser.add_argument('--trained_model', default='./pretrain/synweights_4600.pth', type=str, help='pretrained model')
parser.add_argument('--text_threshold', default=0.7, type=float, help='text confidence threshold')
parser.add_argument('--low_text', default=0.4, type=float, help='text low-bound score')
parser.add_argument('--link_threshold', default=0.4, type=float, help='link confidence threshold')
parser.add_argument('--cuda', default=True, type=str2bool, help='Use cuda to train model')
parser.add_argument('--canvas_size', default=1000, type=int, help='image size for inference')
parser.add_argument('--mag_ratio', default=2, type=float, help='image magnification ratio')
parser.add_argument('--poly', default=False, action='store_true', help='enable polygon type')
parser.add_argument('--show_time', default=True, action='store_true', help='show processing time')
parser.add_argument('--test_folder', default='/data/', type=str, help='folder path to input images')
#params for text recognition
parser.add_argument('--model_path', default='./pretrain/WAP_params.pkl', type=str)
parser.add_argument('--dictionary_target', default='./pretrain/kindai_voc.txt', type=str)
args = parser.parse_args()
""" For test images in a folder """
image_list, _, _ = file_utils.get_files('./data/test')
result_folder = './data/result/'
if not os.path.isdir(result_folder):
os.mkdir(result_folder)
def test_net(net, image, text_threshold, link_threshold, low_text, cuda, poly):
t0 = time.time()
# resize
img_resized, target_ratio, size_heatmap = imgproc.resize_aspect_ratio(image, args.canvas_size, interpolation=cv2.INTER_LINEAR, mag_ratio=args.mag_ratio)
ratio_h = ratio_w = 1 / target_ratio
# preprocessing
x = imgproc.normalizeMeanVariance(img_resized)
x = torch.from_numpy(x).permute(2, 0, 1) # [h, w, c] to [c, h, w]
x = Variable(x.unsqueeze(0)) # [c, h, w] to [b, c, h, w]
if cuda:
x = x.cuda()
# forward pass
y, _ = net(x)
# make score and link map
score_text = y[0,:,:,0].cpu().data.numpy()
score_link = y[0,:,:,1].cpu().data.numpy()
t0 = time.time() - t0
t1 = time.time()
# Post-processing
boxes, polys = craft_utils.getDetBoxes(score_text, score_link, text_threshold, link_threshold, low_text, poly)
# coordinate adjustment
boxes = craft_utils.adjustResultCoordinates(boxes, ratio_w, ratio_h)
polys = craft_utils.adjustResultCoordinates(polys, ratio_w, ratio_h)
for k in range(len(polys)):
if polys[k] is None: polys[k] = boxes[k]
t1 = time.time() - t1
# render results (optional)
render_img = score_text.copy()
render_img = np.hstack((render_img, score_link))
ret_score_text = imgproc.cvt2HeatmapImg(render_img)
if args.show_time : print("\ninfer/postproc time : {:.3f}/{:.3f}".format(t0, t1))
return boxes, polys, ret_score_text
def test(text_detection_modelpara, ocr_modelpara, dictionary_target):
# load net
net = CRAFT() # initialize
print('Loading text detection model from checkpoint {}'.format(text_detection_modelpara))
if args.cuda:
net.load_state_dict(copyStateDict(torch.load(text_detection_modelpara)))
else:
net.load_state_dict(copyStateDict(torch.load(text_detection_modelpara, map_location='cpu')))
if args.cuda:
net = net.cuda()
net = torch.nn.DataParallel(net)
cudnn.benchmark = False
params = {}
params['n'] = 256
params['m'] = 256
params['dim_attention'] = 512
params['D'] = 684
params['K'] = 5748
params['growthRate'] = 24
params['reduction'] = 0.5
params['bottleneck'] = True
params['use_dropout'] = True
params['input_channels'] = 3
params['cuda'] = args.cuda
# load model
OCR = Encoder_Decoder(params)
if args.cuda:
OCR.load_state_dict(copyStateDict(torch.load(ocr_modelpara)))
else:
OCR.load_state_dict(copyStateDict(torch.load(ocr_modelpara, map_location='cpu')))
if args.cuda:
#OCR = OCR.cuda()
OCR = torch.nn.DataParallel(OCR)
cudnn.benchmark = False
OCR.eval()
net.eval()
# load dictionary
worddicts = load_dict(dictionary_target)
worddicts_r = [None] * len(worddicts)
for kk, vv in worddicts.items():
worddicts_r[vv] = kk
t = time.time()
fontPIL = '/usr/share/fonts/truetype/fonts-japanese-gothic.ttf' # japanese font
size = 40
colorBGR = (0,0,255)
paper = ET.Element('paper')
paper.set('xmlns', "http://codh.rois.ac.jp/modern-magazine/")
# load data
for k, image_path in enumerate(image_list[:]):
print("Test image {:d}/{:d}: {:s}".format(k+1, len(image_list), image_path), end='\r')
res_img_file = result_folder + "res_" + os.path.basename(image_path)
#print (res_img_file, os.path.basename(image_path), os.path.exists(res_img_file))
#if os.path.exists(res_img_file): continue
#image = imgproc.loadImage(image_path)
'''image = cv2.imread(image_path, cv2.IMREAD_COLOR)
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
ret2,image = cv2.threshold(image,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
height = image.shape[0]
width = image.shape[1]
scale = 1000.0/height
H = int(image.shape[0] * scale)
W = int(image.shape[1] * scale)
image = cv2.resize(image , (W, H))
print(image.shape, image_path)
cv2.imwrite(image_path, image)
continue'''
image = cv2.imread(image_path, cv2.IMREAD_COLOR)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
h, w = image.shape[0], image.shape[1]
print(image_path)
page = ET.SubElement(paper, "page")
page.set('file', os.path.basename(image_path).replace('.jpg', ''))
page.set('height', str(h))
page.set('width', str(w))
page.set('dpi', str(100))
page.set('number', str(1))
bboxes, polys, score_text = test_net(net, image, args.text_threshold, args.link_threshold, args.low_text, args.cuda, args.poly)
text = []
localtions = []
for i, box in enumerate(bboxes):
poly = np.array(box).astype(np.int32)
min_x = np.min(poly[:,0])
max_x = np.max(poly[:,0])
min_y = np.min(poly[:,1])
max_y = np.max(poly[:,1])
if min_x < 0:
min_x = 0
if min_y < 0:
min_y = 0
#image = cv2.rectangle(image,(min_x,min_y),(max_x,max_y),(0,255,0),3)
input_img = image[min_y:max_y, min_x:max_x]
w = max_x - min_x + 1
h = max_y - min_y + 1
line = ET.SubElement(page, "line")
line.set("x", str(min_x))
line.set("y", str(min_y))
line.set("height", str(h))
line.set("width", str(w))
if w < h:
rate = 20.0/w
w = int(round(w*rate))
h = int(round(h* rate / 20.0) * 20)
else:
rate = 20.0/h
w = int(round(w*rate / 20.0) * 20)
h = int(round(h* rate))
#print (w, h, rate)
input_img = cv2.resize(input_img, (w,h))
mat = np.zeros([1, h, w], dtype='uint8')
mat[0,:,:] = 0.299* input_img[:, :, 0] + 0.587 * input_img[:, :, 1] + 0.114 * input_img[:, :, 2]
xx_pad = mat.astype(np.float32) / 255.
xx_pad = torch.from_numpy(xx_pad[None, :, :, :]) # (1,1,H,W)
if args.cuda:
xx_pad.cuda()
with torch.no_grad():
sample, score, alpha_past_list = gen_sample(OCR, xx_pad, params, args.cuda, k=10, maxlen=600)
score = score / np.array([len(s) for s in sample])
ss = sample[score.argmin()]
alpha_past = alpha_past_list[score.argmin()]
result = ''
i = 0
location = []
for vv in ss:
if vv == 0: # <eol>
break
alpha = alpha_past[i]
if i != 0: alpha = alpha_past[i] - alpha_past[i-1]
(y, x) = np.unravel_index(np.argmax(alpha, axis=None), alpha.shape)
#print (int(16* x /rate), int(16* y/rate) , chr(int(worddicts_r[vv],16)))
location.append([int(16* x/rate) + min_x, int(16* y/rate) + min_y])
#image = cv2.circle(image,(int(16* x/rate) - 8 + min_x, int(16* y/rate) + 8 + min_y),25, (0,0,255), -1)
result += chr(int(worddicts_r[vv],16))
'''char = ET.SubElement(line, "char")
char.set('num_cand', '1')
char.set('x', str(int(16* x/rate) - 8 + min_x))
char.set('y', str(int(16* y/rate) + 8 + min_y))
res = ET.SubElement(char, "result")
res.set('CC', str(100))
res.text = chr(int(worddicts_r[vv],16))
cand = ET.SubElement(char, "cand")
cand.set('CC', str(100))
cand.text = chr(int(worddicts_r[vv],16))'''
i+=1
line.text = result
text.append(result)
localtions.append(location)
image = cv2_putText_1(img = image, text = result, org = (min_x, max_x, min_y, max_y), fontFace = fontPIL, fontScale = size, color = colorBGR)
print('save image')
# save score text
filename, file_ext = os.path.splitext(os.path.basename(image_path))
mask_file = result_folder + "/res_" + filename + '_mask.jpg'
#cv2.imwrite(mask_file, score_text)
file_utils.saveResult(image_path, image, polys, dirname=result_folder)
xml_string = ET.tostring(paper, 'Shift_JIS')
fout = codecs.open('./data/result.xml', 'w', 'shift_jis')
fout.write(xml_string.decode('shift_jis'))
fout.close()
print("elapsed time : {}s".format(time.time() - t))
if __name__ == "__main__":
test(args.trained_model, args.model_path, args.dictionary_target)