57 lines
2.1 KiB
Python
57 lines
2.1 KiB
Python
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
|
|
class Maploss(nn.Module):
|
|
def __init__(self, use_gpu = True):
|
|
|
|
super(Maploss,self).__init__()
|
|
|
|
def single_image_loss(self, pre_loss, loss_label):
|
|
batch_size = pre_loss.shape[0]
|
|
sum_loss = torch.mean(pre_loss.view(-1))*0
|
|
pre_loss = pre_loss.view(batch_size, -1)
|
|
loss_label = loss_label.view(batch_size, -1)
|
|
internel = batch_size
|
|
for i in range(batch_size):
|
|
average_number = 0
|
|
loss = torch.mean(pre_loss.view(-1)) * 0
|
|
positive_pixel = len(pre_loss[i][(loss_label[i] >= 0.1)])
|
|
average_number += positive_pixel
|
|
if positive_pixel != 0:
|
|
posi_loss = torch.mean(pre_loss[i][(loss_label[i] >= 0.1)])
|
|
sum_loss += posi_loss
|
|
if len(pre_loss[i][(loss_label[i] < 0.1)]) < 3*positive_pixel:
|
|
nega_loss = torch.mean(pre_loss[i][(loss_label[i] < 0.1)])
|
|
average_number += len(pre_loss[i][(loss_label[i] < 0.1)])
|
|
else:
|
|
nega_loss = torch.mean(torch.topk(pre_loss[i][(loss_label[i] < 0.1)], 3*positive_pixel)[0])
|
|
average_number += 3*positive_pixel
|
|
sum_loss += nega_loss
|
|
else:
|
|
nega_loss = torch.mean(torch.topk(pre_loss[i], 500)[0])
|
|
average_number += 500
|
|
sum_loss += nega_loss
|
|
#sum_loss += loss/average_number
|
|
|
|
return sum_loss
|
|
|
|
|
|
|
|
def forward(self, gh_label, gah_label, p_gh, p_gah, mask):
|
|
gh_label = gh_label
|
|
gah_label = gah_label
|
|
p_gh = p_gh
|
|
p_gah = p_gah
|
|
loss_fn = torch.nn.MSELoss(reduce=False, size_average=False)
|
|
|
|
assert p_gh.size() == gh_label.size() and p_gah.size() == gah_label.size()
|
|
loss1 = loss_fn(p_gh, gh_label)
|
|
loss2 = loss_fn(p_gah, gah_label)
|
|
loss_g = torch.mul(loss1, mask)
|
|
loss_a = torch.mul(loss2, mask)
|
|
|
|
char_loss = self.single_image_loss(loss_g, gh_label)
|
|
affi_loss = self.single_image_loss(loss_a, gah_label)
|
|
return char_loss/loss_g.shape[0] + affi_loss/loss_a.shape[0] |