""" Copyright (c) 2019-present NAVER Corp. MIT License """ # -*- coding: utf-8 -*- import numpy as np import cv2 import math """ auxilary functions """ # unwarp corodinates def warpCoord(Minv, pt): out = np.matmul(Minv, (pt[0], pt[1], 1)) return np.array([out[0]/out[2], out[1]/out[2]]) """ end of auxilary functions """ def getDetBoxes_core(textmap, linkmap, text_threshold, link_threshold, low_text): # prepare data linkmap = linkmap.copy() textmap = textmap.copy() img_h, img_w = textmap.shape """ labeling method """ ret, text_score = cv2.threshold(textmap, low_text, 1, 0) ret, link_score = cv2.threshold(linkmap, link_threshold, 1, 0) text_score_comb = np.clip(text_score + link_score, 0, 1) nLabels, labels, stats, centroids = cv2.connectedComponentsWithStats(text_score_comb.astype(np.uint8), connectivity=4) det = [] mapper = [] for k in range(1,nLabels): # size filtering size = stats[k, cv2.CC_STAT_AREA] if size < 10: continue # thresholding if np.max(textmap[labels==k]) < text_threshold: continue # make segmentation map segmap = np.zeros(textmap.shape, dtype=np.uint8) segmap[labels==k] = 255 segmap[np.logical_and(link_score==1, text_score==0)] = 0 # remove link area x, y = stats[k, cv2.CC_STAT_LEFT], stats[k, cv2.CC_STAT_TOP] w, h = stats[k, cv2.CC_STAT_WIDTH], stats[k, cv2.CC_STAT_HEIGHT] niter = int(math.sqrt(size * min(w, h) / (w * h)) * 2) sx, ex, sy, ey = x - niter, x + w + niter + 1, y - niter, y + h + niter + 1 # boundary check if sx < 0 : sx = 0 if sy < 0 : sy = 0 if ex >= img_w: ex = img_w if ey >= img_h: ey = img_h kernel = cv2.getStructuringElement(cv2.MORPH_RECT,(1 + niter, 1 + niter)) segmap[sy:ey, sx:ex] = cv2.dilate(segmap[sy:ey, sx:ex], kernel, iterations=1) #kernel1 = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 5)) #segmap[sy:ey, sx:ex] = cv2.dilate(segmap[sy:ey, sx:ex], kernel1, iterations=1) # make box np_contours = np.roll(np.array(np.where(segmap!=0)),1,axis=0).transpose().reshape(-1,2) rectangle = cv2.minAreaRect(np_contours) box = cv2.boxPoints(rectangle) # align diamond-shape w, h = np.linalg.norm(box[0] - box[1]), np.linalg.norm(box[1] - box[2]) box_ratio = max(w, h) / (min(w, h) + 1e-5) if abs(1 - box_ratio) <= 0.1: l, r = min(np_contours[:,0]), max(np_contours[:,0]) t, b = min(np_contours[:,1]), max(np_contours[:,1]) box = np.array([[l, t], [r, t], [r, b], [l, b]], dtype=np.float32) # make clock-wise order startidx = box.sum(axis=1).argmin() box = np.roll(box, 4-startidx, 0) box = np.array(box) det.append(box) mapper.append(k) return det, labels, mapper def getPoly_core(boxes, labels, mapper, linkmap): # configs num_cp = 5 max_len_ratio = 0.7 expand_ratio = 1.45 max_r = 2.0 step_r = 0.2 polys = [] for k, box in enumerate(boxes): # size filter for small instance w, h = int(np.linalg.norm(box[0] - box[1]) + 1), int(np.linalg.norm(box[1] - box[2]) + 1) if w < 30 or h < 30: polys.append(None); continue # warp image tar = np.float32([[0,0],[w,0],[w,h],[0,h]]) M = cv2.getPerspectiveTransform(box, tar) word_label = cv2.warpPerspective(labels, M, (w, h), flags=cv2.INTER_NEAREST) try: Minv = np.linalg.inv(M) except: polys.append(None); continue # binarization for selected label cur_label = mapper[k] word_label[word_label != cur_label] = 0 word_label[word_label > 0] = 1 """ Polygon generation """ # find top/bottom contours cp = [] max_len = -1 for i in range(w): region = np.where(word_label[:,i] != 0)[0] if len(region) < 2 : continue cp.append((i, region[0], region[-1])) length = region[-1] - region[0] + 1 if length > max_len: max_len = length # pass if max_len is similar to h if h * max_len_ratio < max_len: polys.append(None); continue # get pivot points with fixed length tot_seg = num_cp * 2 + 1 seg_w = w / tot_seg # segment width pp = [None] * num_cp # init pivot points cp_section = [[0, 0]] * tot_seg seg_height = [0] * num_cp seg_num = 0 num_sec = 0 prev_h = -1 for i in range(0,len(cp)): (x, sy, ey) = cp[i] if (seg_num + 1) * seg_w <= x and seg_num <= tot_seg: # average previous segment if num_sec == 0: break cp_section[seg_num] = [cp_section[seg_num][0] / num_sec, cp_section[seg_num][1] / num_sec] num_sec = 0 # reset variables seg_num += 1 prev_h = -1 # accumulate center points cy = (sy + ey) * 0.5 cur_h = ey - sy + 1 cp_section[seg_num] = [cp_section[seg_num][0] + x, cp_section[seg_num][1] + cy] num_sec += 1 if seg_num % 2 == 0: continue # No polygon area if prev_h < cur_h: pp[int((seg_num - 1)/2)] = (x, cy) seg_height[int((seg_num - 1)/2)] = cur_h prev_h = cur_h # processing last segment if num_sec != 0: cp_section[-1] = [cp_section[-1][0] / num_sec, cp_section[-1][1] / num_sec] # pass if num of pivots is not sufficient or segment widh is smaller than character height if None in pp or seg_w < np.max(seg_height) * 0.25: polys.append(None); continue # calc median maximum of pivot points half_char_h = np.median(seg_height) * expand_ratio / 2 # calc gradiant and apply to make horizontal pivots new_pp = [] for i, (x, cy) in enumerate(pp): dx = cp_section[i * 2 + 2][0] - cp_section[i * 2][0] dy = cp_section[i * 2 + 2][1] - cp_section[i * 2][1] if dx == 0: # gradient if zero new_pp.append([x, cy - half_char_h, x, cy + half_char_h]) continue rad = - math.atan2(dy, dx) c, s = half_char_h * math.cos(rad), half_char_h * math.sin(rad) new_pp.append([x - s, cy - c, x + s, cy + c]) # get edge points to cover character heatmaps isSppFound, isEppFound = False, False grad_s = (pp[1][1] - pp[0][1]) / (pp[1][0] - pp[0][0]) + (pp[2][1] - pp[1][1]) / (pp[2][0] - pp[1][0]) grad_e = (pp[-2][1] - pp[-1][1]) / (pp[-2][0] - pp[-1][0]) + (pp[-3][1] - pp[-2][1]) / (pp[-3][0] - pp[-2][0]) for r in np.arange(0.5, max_r, step_r): dx = 2 * half_char_h * r if not isSppFound: line_img = np.zeros(word_label.shape, dtype=np.uint8) dy = grad_s * dx p = np.array(new_pp[0]) - np.array([dx, dy, dx, dy]) cv2.line(line_img, (int(p[0]), int(p[1])), (int(p[2]), int(p[3])), 1, thickness=1) if np.sum(np.logical_and(word_label, line_img)) == 0 or r + 2 * step_r >= max_r: spp = p isSppFound = True if not isEppFound: line_img = np.zeros(word_label.shape, dtype=np.uint8) dy = grad_e * dx p = np.array(new_pp[-1]) + np.array([dx, dy, dx, dy]) cv2.line(line_img, (int(p[0]), int(p[1])), (int(p[2]), int(p[3])), 1, thickness=1) if np.sum(np.logical_and(word_label, line_img)) == 0 or r + 2 * step_r >= max_r: epp = p isEppFound = True if isSppFound and isEppFound: break # pass if boundary of polygon is not found if not (isSppFound and isEppFound): polys.append(None); continue # make final polygon poly = [] poly.append(warpCoord(Minv, (spp[0], spp[1]))) for p in new_pp: poly.append(warpCoord(Minv, (p[0], p[1]))) poly.append(warpCoord(Minv, (epp[0], epp[1]))) poly.append(warpCoord(Minv, (epp[2], epp[3]))) for p in reversed(new_pp): poly.append(warpCoord(Minv, (p[2], p[3]))) poly.append(warpCoord(Minv, (spp[2], spp[3]))) # add to final result polys.append(np.array(poly)) return polys def getDetBoxes(textmap, linkmap, text_threshold, link_threshold, low_text, poly=False): boxes, labels, mapper = getDetBoxes_core(textmap, linkmap, text_threshold, link_threshold, low_text) if poly: polys = getPoly_core(boxes, labels, mapper, linkmap) else: polys = [None] * len(boxes) return boxes, polys def adjustResultCoordinates(polys, ratio_w, ratio_h, ratio_net = 2): if len(polys) > 0: polys = np.array(polys) for k in range(len(polys)): if polys[k] is not None: polys[k] *= (ratio_w * ratio_net, ratio_h * ratio_net) return polys