71 lines
2.1 KiB
Python
71 lines
2.1 KiB
Python
|
"""
|
||
|
Copyright (c) 2019-present NAVER Corp.
|
||
|
MIT License
|
||
|
"""
|
||
|
|
||
|
# -*- coding: utf-8 -*-
|
||
|
import numpy as np
|
||
|
from skimage import io
|
||
|
import cv2
|
||
|
|
||
|
def loadImage(img_file):
|
||
|
img = io.imread(img_file) # RGB order
|
||
|
if img.shape[0] == 2: img = img[0]
|
||
|
if len(img.shape) == 2 : img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
|
||
|
if img.shape[2] == 4: img = img[:,:,:3]
|
||
|
img = np.array(img)
|
||
|
|
||
|
return img
|
||
|
|
||
|
def normalizeMeanVariance(in_img, mean=(0.485, 0.456, 0.406), variance=(0.229, 0.224, 0.225)):
|
||
|
# should be RGB order
|
||
|
img = in_img.copy().astype(np.float32)
|
||
|
|
||
|
img -= np.array([mean[0] * 255.0, mean[1] * 255.0, mean[2] * 255.0], dtype=np.float32)
|
||
|
img /= np.array([variance[0] * 255.0, variance[1] * 255.0, variance[2] * 255.0], dtype=np.float32)
|
||
|
return img
|
||
|
|
||
|
def denormalizeMeanVariance(in_img, mean=(0.485, 0.456, 0.406), variance=(0.229, 0.224, 0.225)):
|
||
|
# should be RGB order
|
||
|
img = in_img.copy()
|
||
|
img *= variance
|
||
|
img += mean
|
||
|
img *= 255.0
|
||
|
img = np.clip(img, 0, 255).astype(np.uint8)
|
||
|
return img
|
||
|
|
||
|
def resize_aspect_ratio(img, square_size, interpolation, mag_ratio=1):
|
||
|
height, width, channel = img.shape
|
||
|
|
||
|
# magnify image size
|
||
|
target_size = mag_ratio * max(height, width)
|
||
|
|
||
|
# set original image size
|
||
|
if target_size > square_size:
|
||
|
target_size = square_size
|
||
|
|
||
|
ratio = target_size / max(height, width)
|
||
|
|
||
|
target_h, target_w = int(height * ratio), int(width * ratio)
|
||
|
proc = cv2.resize(img, (target_w, target_h), interpolation = interpolation)
|
||
|
|
||
|
|
||
|
# make canvas and paste image
|
||
|
target_h32, target_w32 = target_h, target_w
|
||
|
if target_h % 32 != 0:
|
||
|
target_h32 = target_h + (32 - target_h % 32)
|
||
|
if target_w % 32 != 0:
|
||
|
target_w32 = target_w + (32 - target_w % 32)
|
||
|
resized = np.zeros((target_h32, target_w32, channel), dtype=np.float32)
|
||
|
resized[0:target_h, 0:target_w, :] = proc
|
||
|
target_h, target_w = target_h32, target_w32
|
||
|
|
||
|
size_heatmap = (int(target_w/2), int(target_h/2))
|
||
|
|
||
|
return resized, ratio, size_heatmap
|
||
|
|
||
|
def cvt2HeatmapImg(img):
|
||
|
img = (np.clip(img, 0, 1) * 255).astype(np.uint8)
|
||
|
img = cv2.applyColorMap(img, cv2.COLORMAP_JET)
|
||
|
return img
|