247 lines
9.1 KiB
Python
247 lines
9.1 KiB
Python
|
"""
|
||
|
Copyright (c) 2019-present NAVER Corp.
|
||
|
MIT License
|
||
|
"""
|
||
|
|
||
|
# -*- coding: utf-8 -*-
|
||
|
import numpy as np
|
||
|
import cv2
|
||
|
import math
|
||
|
|
||
|
""" auxilary functions """
|
||
|
# unwarp corodinates
|
||
|
def warpCoord(Minv, pt):
|
||
|
out = np.matmul(Minv, (pt[0], pt[1], 1))
|
||
|
return np.array([out[0]/out[2], out[1]/out[2]])
|
||
|
""" end of auxilary functions """
|
||
|
|
||
|
|
||
|
def getDetBoxes_core(textmap, linkmap, text_threshold, link_threshold, low_text):
|
||
|
# prepare data
|
||
|
linkmap = linkmap.copy()
|
||
|
textmap = textmap.copy()
|
||
|
img_h, img_w = textmap.shape
|
||
|
|
||
|
""" labeling method """
|
||
|
ret, text_score = cv2.threshold(textmap, low_text, 1, 0)
|
||
|
ret, link_score = cv2.threshold(linkmap, link_threshold, 1, 0)
|
||
|
|
||
|
text_score_comb = np.clip(text_score + link_score, 0, 1)
|
||
|
nLabels, labels, stats, centroids = cv2.connectedComponentsWithStats(text_score_comb.astype(np.uint8), connectivity=4)
|
||
|
|
||
|
det = []
|
||
|
mapper = []
|
||
|
for k in range(1,nLabels):
|
||
|
# size filtering
|
||
|
size = stats[k, cv2.CC_STAT_AREA]
|
||
|
if size < 10: continue
|
||
|
|
||
|
# thresholding
|
||
|
if np.max(textmap[labels==k]) < text_threshold: continue
|
||
|
|
||
|
# make segmentation map
|
||
|
segmap = np.zeros(textmap.shape, dtype=np.uint8)
|
||
|
segmap[labels==k] = 255
|
||
|
segmap[np.logical_and(link_score==1, text_score==0)] = 0 # remove link area
|
||
|
x, y = stats[k, cv2.CC_STAT_LEFT], stats[k, cv2.CC_STAT_TOP]
|
||
|
w, h = stats[k, cv2.CC_STAT_WIDTH], stats[k, cv2.CC_STAT_HEIGHT]
|
||
|
niter = int(math.sqrt(size * min(w, h) / (w * h)) * 2)
|
||
|
sx, ex, sy, ey = x - niter, x + w + niter + 1, y - niter, y + h + niter + 1
|
||
|
# boundary check
|
||
|
if sx < 0 : sx = 0
|
||
|
if sy < 0 : sy = 0
|
||
|
if ex >= img_w: ex = img_w
|
||
|
if ey >= img_h: ey = img_h
|
||
|
kernel = cv2.getStructuringElement(cv2.MORPH_RECT,(1 + niter, 1 + niter))
|
||
|
segmap[sy:ey, sx:ex] = cv2.dilate(segmap[sy:ey, sx:ex], kernel, iterations=1)
|
||
|
#kernel1 = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 5))
|
||
|
#segmap[sy:ey, sx:ex] = cv2.dilate(segmap[sy:ey, sx:ex], kernel1, iterations=1)
|
||
|
|
||
|
|
||
|
# make box
|
||
|
np_contours = np.roll(np.array(np.where(segmap!=0)),1,axis=0).transpose().reshape(-1,2)
|
||
|
rectangle = cv2.minAreaRect(np_contours)
|
||
|
box = cv2.boxPoints(rectangle)
|
||
|
|
||
|
# align diamond-shape
|
||
|
w, h = np.linalg.norm(box[0] - box[1]), np.linalg.norm(box[1] - box[2])
|
||
|
box_ratio = max(w, h) / (min(w, h) + 1e-5)
|
||
|
if abs(1 - box_ratio) <= 0.1:
|
||
|
l, r = min(np_contours[:,0]), max(np_contours[:,0])
|
||
|
t, b = min(np_contours[:,1]), max(np_contours[:,1])
|
||
|
box = np.array([[l, t], [r, t], [r, b], [l, b]], dtype=np.float32)
|
||
|
|
||
|
# make clock-wise order
|
||
|
startidx = box.sum(axis=1).argmin()
|
||
|
box = np.roll(box, 4-startidx, 0)
|
||
|
box = np.array(box)
|
||
|
|
||
|
det.append(box)
|
||
|
mapper.append(k)
|
||
|
|
||
|
return det, labels, mapper
|
||
|
|
||
|
def getPoly_core(boxes, labels, mapper, linkmap):
|
||
|
# configs
|
||
|
num_cp = 5
|
||
|
max_len_ratio = 0.7
|
||
|
expand_ratio = 1.45
|
||
|
max_r = 2.0
|
||
|
step_r = 0.2
|
||
|
|
||
|
polys = []
|
||
|
for k, box in enumerate(boxes):
|
||
|
# size filter for small instance
|
||
|
w, h = int(np.linalg.norm(box[0] - box[1]) + 1), int(np.linalg.norm(box[1] - box[2]) + 1)
|
||
|
if w < 30 or h < 30:
|
||
|
polys.append(None); continue
|
||
|
|
||
|
# warp image
|
||
|
tar = np.float32([[0,0],[w,0],[w,h],[0,h]])
|
||
|
M = cv2.getPerspectiveTransform(box, tar)
|
||
|
word_label = cv2.warpPerspective(labels, M, (w, h), flags=cv2.INTER_NEAREST)
|
||
|
try:
|
||
|
Minv = np.linalg.inv(M)
|
||
|
except:
|
||
|
polys.append(None); continue
|
||
|
|
||
|
# binarization for selected label
|
||
|
cur_label = mapper[k]
|
||
|
word_label[word_label != cur_label] = 0
|
||
|
word_label[word_label > 0] = 1
|
||
|
|
||
|
""" Polygon generation """
|
||
|
# find top/bottom contours
|
||
|
cp = []
|
||
|
max_len = -1
|
||
|
for i in range(w):
|
||
|
region = np.where(word_label[:,i] != 0)[0]
|
||
|
if len(region) < 2 : continue
|
||
|
cp.append((i, region[0], region[-1]))
|
||
|
length = region[-1] - region[0] + 1
|
||
|
if length > max_len: max_len = length
|
||
|
|
||
|
# pass if max_len is similar to h
|
||
|
if h * max_len_ratio < max_len:
|
||
|
polys.append(None); continue
|
||
|
|
||
|
# get pivot points with fixed length
|
||
|
tot_seg = num_cp * 2 + 1
|
||
|
seg_w = w / tot_seg # segment width
|
||
|
pp = [None] * num_cp # init pivot points
|
||
|
cp_section = [[0, 0]] * tot_seg
|
||
|
seg_height = [0] * num_cp
|
||
|
seg_num = 0
|
||
|
num_sec = 0
|
||
|
prev_h = -1
|
||
|
for i in range(0,len(cp)):
|
||
|
(x, sy, ey) = cp[i]
|
||
|
if (seg_num + 1) * seg_w <= x and seg_num <= tot_seg:
|
||
|
# average previous segment
|
||
|
if num_sec == 0: break
|
||
|
cp_section[seg_num] = [cp_section[seg_num][0] / num_sec, cp_section[seg_num][1] / num_sec]
|
||
|
num_sec = 0
|
||
|
|
||
|
# reset variables
|
||
|
seg_num += 1
|
||
|
prev_h = -1
|
||
|
|
||
|
# accumulate center points
|
||
|
cy = (sy + ey) * 0.5
|
||
|
cur_h = ey - sy + 1
|
||
|
cp_section[seg_num] = [cp_section[seg_num][0] + x, cp_section[seg_num][1] + cy]
|
||
|
num_sec += 1
|
||
|
|
||
|
if seg_num % 2 == 0: continue # No polygon area
|
||
|
|
||
|
if prev_h < cur_h:
|
||
|
pp[int((seg_num - 1)/2)] = (x, cy)
|
||
|
seg_height[int((seg_num - 1)/2)] = cur_h
|
||
|
prev_h = cur_h
|
||
|
|
||
|
# processing last segment
|
||
|
if num_sec != 0:
|
||
|
cp_section[-1] = [cp_section[-1][0] / num_sec, cp_section[-1][1] / num_sec]
|
||
|
|
||
|
# pass if num of pivots is not sufficient or segment widh is smaller than character height
|
||
|
if None in pp or seg_w < np.max(seg_height) * 0.25:
|
||
|
polys.append(None); continue
|
||
|
|
||
|
# calc median maximum of pivot points
|
||
|
half_char_h = np.median(seg_height) * expand_ratio / 2
|
||
|
|
||
|
# calc gradiant and apply to make horizontal pivots
|
||
|
new_pp = []
|
||
|
for i, (x, cy) in enumerate(pp):
|
||
|
dx = cp_section[i * 2 + 2][0] - cp_section[i * 2][0]
|
||
|
dy = cp_section[i * 2 + 2][1] - cp_section[i * 2][1]
|
||
|
if dx == 0: # gradient if zero
|
||
|
new_pp.append([x, cy - half_char_h, x, cy + half_char_h])
|
||
|
continue
|
||
|
rad = - math.atan2(dy, dx)
|
||
|
c, s = half_char_h * math.cos(rad), half_char_h * math.sin(rad)
|
||
|
new_pp.append([x - s, cy - c, x + s, cy + c])
|
||
|
|
||
|
# get edge points to cover character heatmaps
|
||
|
isSppFound, isEppFound = False, False
|
||
|
grad_s = (pp[1][1] - pp[0][1]) / (pp[1][0] - pp[0][0]) + (pp[2][1] - pp[1][1]) / (pp[2][0] - pp[1][0])
|
||
|
grad_e = (pp[-2][1] - pp[-1][1]) / (pp[-2][0] - pp[-1][0]) + (pp[-3][1] - pp[-2][1]) / (pp[-3][0] - pp[-2][0])
|
||
|
for r in np.arange(0.5, max_r, step_r):
|
||
|
dx = 2 * half_char_h * r
|
||
|
if not isSppFound:
|
||
|
line_img = np.zeros(word_label.shape, dtype=np.uint8)
|
||
|
dy = grad_s * dx
|
||
|
p = np.array(new_pp[0]) - np.array([dx, dy, dx, dy])
|
||
|
cv2.line(line_img, (int(p[0]), int(p[1])), (int(p[2]), int(p[3])), 1, thickness=1)
|
||
|
if np.sum(np.logical_and(word_label, line_img)) == 0 or r + 2 * step_r >= max_r:
|
||
|
spp = p
|
||
|
isSppFound = True
|
||
|
if not isEppFound:
|
||
|
line_img = np.zeros(word_label.shape, dtype=np.uint8)
|
||
|
dy = grad_e * dx
|
||
|
p = np.array(new_pp[-1]) + np.array([dx, dy, dx, dy])
|
||
|
cv2.line(line_img, (int(p[0]), int(p[1])), (int(p[2]), int(p[3])), 1, thickness=1)
|
||
|
if np.sum(np.logical_and(word_label, line_img)) == 0 or r + 2 * step_r >= max_r:
|
||
|
epp = p
|
||
|
isEppFound = True
|
||
|
if isSppFound and isEppFound:
|
||
|
break
|
||
|
|
||
|
# pass if boundary of polygon is not found
|
||
|
if not (isSppFound and isEppFound):
|
||
|
polys.append(None); continue
|
||
|
|
||
|
# make final polygon
|
||
|
poly = []
|
||
|
poly.append(warpCoord(Minv, (spp[0], spp[1])))
|
||
|
for p in new_pp:
|
||
|
poly.append(warpCoord(Minv, (p[0], p[1])))
|
||
|
poly.append(warpCoord(Minv, (epp[0], epp[1])))
|
||
|
poly.append(warpCoord(Minv, (epp[2], epp[3])))
|
||
|
for p in reversed(new_pp):
|
||
|
poly.append(warpCoord(Minv, (p[2], p[3])))
|
||
|
poly.append(warpCoord(Minv, (spp[2], spp[3])))
|
||
|
|
||
|
# add to final result
|
||
|
polys.append(np.array(poly))
|
||
|
|
||
|
return polys
|
||
|
|
||
|
def getDetBoxes(textmap, linkmap, text_threshold, link_threshold, low_text, poly=False):
|
||
|
boxes, labels, mapper = getDetBoxes_core(textmap, linkmap, text_threshold, link_threshold, low_text)
|
||
|
|
||
|
if poly:
|
||
|
polys = getPoly_core(boxes, labels, mapper, linkmap)
|
||
|
else:
|
||
|
polys = [None] * len(boxes)
|
||
|
|
||
|
return boxes, polys
|
||
|
|
||
|
def adjustResultCoordinates(polys, ratio_w, ratio_h, ratio_net = 2):
|
||
|
if len(polys) > 0:
|
||
|
polys = np.array(polys)
|
||
|
for k in range(len(polys)):
|
||
|
if polys[k] is not None:
|
||
|
polys[k] *= (ratio_w * ratio_net, ratio_h * ratio_net)
|
||
|
return polys
|