ImHex/source/lang/evaluator.cpp

641 lines
32 KiB
C++

#include "lang/evaluator.hpp"
#include "lang/token.hpp"
#include "helpers/utils.hpp"
#include <bit>
#include <algorithm>
#include <unistd.h>
namespace hex::lang {
Evaluator::Evaluator(prv::Provider* &provider, std::endian defaultDataEndian)
: m_provider(provider), m_defaultDataEndian(defaultDataEndian) {
this->addFunction("findSequence", Function::MoreParametersThan | 1, [this](auto params) {
return this->findSequence(params);
});
this->addFunction("readUnsigned", 2, [this](auto params) {
return this->readUnsigned(params);
});
this->addFunction("readSigned", 2, [this](auto params) {
return this->readSigned(params);
});
}
ASTNodeIntegerLiteral* Evaluator::evaluateScopeResolution(ASTNodeScopeResolution *node) {
ASTNode *currScope = nullptr;
for (const auto &identifier : node->getPath()) {
if (currScope == nullptr) {
if (!this->m_types.contains(identifier))
break;
currScope = this->m_types[identifier.data()];
} else if (auto enumNode = dynamic_cast<ASTNodeEnum*>(currScope); enumNode != nullptr) {
if (!enumNode->getEntries().contains(identifier))
break;
else
return evaluateMathematicalExpression(static_cast<ASTNodeNumericExpression*>(enumNode->getEntries().at(identifier)));
}
}
throwEvaluateError("failed to find identifier", node->getLineNumber());
}
ASTNodeIntegerLiteral* Evaluator::evaluateRValue(ASTNodeRValue *node) {
if (this->m_currMembers.empty())
throwEvaluateError("no variables available", node->getLineNumber());
const std::vector<PatternData*>* currMembers = this->m_currMembers.back();
PatternData *currPattern = nullptr;
for (const auto &identifier : node->getPath()) {
if (auto structPattern = dynamic_cast<PatternDataStruct*>(currPattern); structPattern != nullptr)
currMembers = &structPattern->getMembers();
else if (auto unionPattern = dynamic_cast<PatternDataUnion*>(currPattern); unionPattern != nullptr)
currMembers = &unionPattern->getMembers();
else if (currPattern != nullptr)
throwEvaluateError("tried to access member of a non-struct/union type", node->getLineNumber());
auto candidate = std::find_if(currMembers->begin(), currMembers->end(), [&](auto member) {
return member->getVariableName() == identifier;
});
if (candidate != currMembers->end())
currPattern = *candidate;
else
throwEvaluateError(hex::format("could not find identifier '%s'", identifier.c_str()), node->getLineNumber());
}
if (auto unsignedPattern = dynamic_cast<PatternDataUnsigned*>(currPattern); unsignedPattern != nullptr) {
u8 value[unsignedPattern->getSize()];
this->m_provider->read(unsignedPattern->getOffset(), value, unsignedPattern->getSize());
switch (unsignedPattern->getSize()) {
case 1: return new ASTNodeIntegerLiteral({ Token::ValueType::Unsigned8Bit, hex::changeEndianess(*reinterpret_cast<u8*>(value), 1, this->getCurrentEndian()) });
case 2: return new ASTNodeIntegerLiteral({ Token::ValueType::Unsigned16Bit, hex::changeEndianess(*reinterpret_cast<u16*>(value), 2, this->getCurrentEndian()) });
case 4: return new ASTNodeIntegerLiteral({ Token::ValueType::Unsigned32Bit, hex::changeEndianess(*reinterpret_cast<u32*>(value), 4, this->getCurrentEndian()) });
case 8: return new ASTNodeIntegerLiteral({ Token::ValueType::Unsigned64Bit, hex::changeEndianess(*reinterpret_cast<u64*>(value), 8, this->getCurrentEndian()) });
case 16: return new ASTNodeIntegerLiteral({ Token::ValueType::Unsigned128Bit, hex::changeEndianess(*reinterpret_cast<u128*>(value), 16, this->getCurrentEndian()) });
default: throwEvaluateError("invalid rvalue size", node->getLineNumber());
}
} else if (auto signedPattern = dynamic_cast<PatternDataSigned*>(currPattern); signedPattern != nullptr) {
u8 value[unsignedPattern->getSize()];
this->m_provider->read(signedPattern->getOffset(), value, signedPattern->getSize());
switch (unsignedPattern->getSize()) {
case 1: return new ASTNodeIntegerLiteral({ Token::ValueType::Signed8Bit, hex::changeEndianess(*reinterpret_cast<s8*>(value), 1, this->getCurrentEndian()) });
case 2: return new ASTNodeIntegerLiteral({ Token::ValueType::Signed16Bit, hex::changeEndianess(*reinterpret_cast<s16*>(value), 2, this->getCurrentEndian()) });
case 4: return new ASTNodeIntegerLiteral({ Token::ValueType::Signed32Bit, hex::changeEndianess(*reinterpret_cast<s32*>(value), 4, this->getCurrentEndian()) });
case 8: return new ASTNodeIntegerLiteral({ Token::ValueType::Signed64Bit, hex::changeEndianess(*reinterpret_cast<s64*>(value), 8, this->getCurrentEndian()) });
case 16: return new ASTNodeIntegerLiteral({ Token::ValueType::Signed128Bit, hex::changeEndianess(*reinterpret_cast<s128*>(value), 16, this->getCurrentEndian()) });
default: throwEvaluateError("invalid rvalue size", node->getLineNumber());
}
} else if (auto enumPattern = dynamic_cast<PatternDataEnum*>(currPattern); enumPattern != nullptr) {
u8 value[enumPattern->getSize()];
this->m_provider->read(enumPattern->getOffset(), value, enumPattern->getSize());
switch (enumPattern->getSize()) {
case 1: return new ASTNodeIntegerLiteral({ Token::ValueType::Unsigned8Bit, hex::changeEndianess(*reinterpret_cast<u8*>(value), 1, this->getCurrentEndian()) });
case 2: return new ASTNodeIntegerLiteral({ Token::ValueType::Unsigned16Bit, hex::changeEndianess(*reinterpret_cast<u16*>(value), 2, this->getCurrentEndian()) });
case 4: return new ASTNodeIntegerLiteral({ Token::ValueType::Unsigned32Bit, hex::changeEndianess(*reinterpret_cast<u32*>(value), 4, this->getCurrentEndian()) });
case 8: return new ASTNodeIntegerLiteral({ Token::ValueType::Unsigned64Bit, hex::changeEndianess(*reinterpret_cast<u64*>(value), 8, this->getCurrentEndian()) });
case 16: return new ASTNodeIntegerLiteral({ Token::ValueType::Unsigned128Bit, hex::changeEndianess(*reinterpret_cast<u128*>(value), 16, this->getCurrentEndian()) });
default: throwEvaluateError("invalid rvalue size", node->getLineNumber());
}
} else
throwEvaluateError("tried to use non-integer value in numeric expression", node->getLineNumber());
}
ASTNodeIntegerLiteral* Evaluator::evaluateFunctionCall(ASTNodeFunctionCall *node) {
std::vector<ASTNodeIntegerLiteral*> evaluatedParams;
ScopeExit paramCleanup([&] {
for (auto &param : evaluatedParams)
delete param;
});
for (auto &param : node->getParams())
evaluatedParams.push_back(this->evaluateMathematicalExpression(static_cast<ASTNodeNumericExpression*>(param)));
if (!this->m_functions.contains(node->getFunctionName().data()))
throwEvaluateError(hex::format("no function named '%s' found", node->getFunctionName().data()), node->getLineNumber());
auto &function = this->m_functions[node->getFunctionName().data()];
if (function.parameterCount == Function::UnlimitedParameters) {
; // Don't check parameter count
}
else if (function.parameterCount & Function::LessParametersThan) {
if (evaluatedParams.size() >= (function.parameterCount & ~Function::LessParametersThan))
throwEvaluateError(hex::format("too many parameters for function '%s'. Expected %d", node->getFunctionName().data(), function.parameterCount & ~Function::LessParametersThan), node->getLineNumber());
} else if (function.parameterCount & Function::MoreParametersThan) {
if (evaluatedParams.size() <= (function.parameterCount & ~Function::MoreParametersThan))
throwEvaluateError(hex::format("too few parameters for function '%s'. Expected %d", node->getFunctionName().data(), function.parameterCount & ~Function::MoreParametersThan), node->getLineNumber());
} else if (function.parameterCount != evaluatedParams.size()) {
throwEvaluateError(hex::format("invalid number of parameters for function '%s'. Expected %d", node->getFunctionName().data(), function.parameterCount), node->getLineNumber());
}
return function.func(evaluatedParams);
}
#define FLOAT_BIT_OPERATION(name) \
auto name(std::floating_point auto left, auto right) { throw std::runtime_error(""); return 0; } \
auto name(auto left, std::floating_point auto right) { throw std::runtime_error(""); return 0; } \
auto name(std::floating_point auto left, std::floating_point auto right) { throw std::runtime_error(""); return 0; } \
auto name(std::integral auto left, std::integral auto right)
namespace {
FLOAT_BIT_OPERATION(shiftLeft) {
return left << right;
}
FLOAT_BIT_OPERATION(shiftRight) {
return left >> right;
}
FLOAT_BIT_OPERATION(bitAnd) {
return left & right;
}
FLOAT_BIT_OPERATION(bitOr) {
return left | right;
}
FLOAT_BIT_OPERATION(bitXor) {
return left ^ right;
}
FLOAT_BIT_OPERATION(bitNot) {
return ~right;
}
}
ASTNodeIntegerLiteral* Evaluator::evaluateOperator(ASTNodeIntegerLiteral *left, ASTNodeIntegerLiteral *right, Token::Operator op) {
auto newType = [&] {
#define CHECK_TYPE(type) if (left->getType() == (type) || right->getType() == (type)) return (type)
#define DEFAULT_TYPE(type) return (type)
CHECK_TYPE(Token::ValueType::Double);
CHECK_TYPE(Token::ValueType::Float);
CHECK_TYPE(Token::ValueType::Unsigned128Bit);
CHECK_TYPE(Token::ValueType::Signed128Bit);
CHECK_TYPE(Token::ValueType::Unsigned64Bit);
CHECK_TYPE(Token::ValueType::Signed64Bit);
CHECK_TYPE(Token::ValueType::Unsigned32Bit);
CHECK_TYPE(Token::ValueType::Signed32Bit);
CHECK_TYPE(Token::ValueType::Unsigned16Bit);
CHECK_TYPE(Token::ValueType::Signed16Bit);
CHECK_TYPE(Token::ValueType::Unsigned8Bit);
CHECK_TYPE(Token::ValueType::Signed8Bit);
CHECK_TYPE(Token::ValueType::Character);
DEFAULT_TYPE(Token::ValueType::Signed32Bit);
#undef CHECK_TYPE
#undef DEFAULT_TYPE
}();
try {
return std::visit([&](auto &&leftValue, auto &&rightValue) -> ASTNodeIntegerLiteral * {
switch (op) {
case Token::Operator::Plus:
return new ASTNodeIntegerLiteral({ newType, leftValue + rightValue });
case Token::Operator::Minus:
return new ASTNodeIntegerLiteral({ newType, leftValue - rightValue });
case Token::Operator::Star:
return new ASTNodeIntegerLiteral({ newType, leftValue * rightValue });
case Token::Operator::Slash:
return new ASTNodeIntegerLiteral({ newType, leftValue / rightValue });
case Token::Operator::ShiftLeft:
return new ASTNodeIntegerLiteral({ newType, shiftLeft(leftValue, rightValue) });
case Token::Operator::ShiftRight:
return new ASTNodeIntegerLiteral({ newType, shiftRight(leftValue, rightValue) });
case Token::Operator::BitAnd:
return new ASTNodeIntegerLiteral({ newType, bitAnd(leftValue, rightValue) });
case Token::Operator::BitXor:
return new ASTNodeIntegerLiteral({ newType, bitXor(leftValue, rightValue) });
case Token::Operator::BitOr:
return new ASTNodeIntegerLiteral({ newType, bitOr(leftValue, rightValue) });
case Token::Operator::BitNot:
return new ASTNodeIntegerLiteral({ newType, bitNot(leftValue, rightValue) });
case Token::Operator::BoolEquals:
return new ASTNodeIntegerLiteral({ newType, leftValue == rightValue });
case Token::Operator::BoolNotEquals:
return new ASTNodeIntegerLiteral({ newType, leftValue != rightValue });
case Token::Operator::BoolGreaterThan:
return new ASTNodeIntegerLiteral({ newType, leftValue > rightValue });
case Token::Operator::BoolLessThan:
return new ASTNodeIntegerLiteral({ newType, leftValue < rightValue });
case Token::Operator::BoolGreaterThanOrEquals:
return new ASTNodeIntegerLiteral({ newType, leftValue >= rightValue });
case Token::Operator::BoolLessThanOrEquals:
return new ASTNodeIntegerLiteral({ newType, leftValue <= rightValue });
case Token::Operator::BoolAnd:
return new ASTNodeIntegerLiteral({ newType, leftValue && rightValue });
case Token::Operator::BoolXor:
return new ASTNodeIntegerLiteral({ newType, leftValue && !rightValue || !leftValue && rightValue });
case Token::Operator::BoolOr:
return new ASTNodeIntegerLiteral({ newType, leftValue || rightValue });
case Token::Operator::BoolNot:
return new ASTNodeIntegerLiteral({ newType, !rightValue });
default:
throwEvaluateError("invalid operator used in mathematical expression", left->getLineNumber());
}
}, left->getValue(), right->getValue());
} catch (std::runtime_error &e) {
throwEvaluateError("bitwise operations on floating point numbers are forbidden", left->getLineNumber());
}
}
ASTNodeIntegerLiteral* Evaluator::evaluateOperand(ASTNode *node) {
if (auto exprLiteral = dynamic_cast<ASTNodeIntegerLiteral*>(node); exprLiteral != nullptr)
return exprLiteral;
else if (auto exprExpression = dynamic_cast<ASTNodeNumericExpression*>(node); exprExpression != nullptr)
return evaluateMathematicalExpression(exprExpression);
else if (auto exprRvalue = dynamic_cast<ASTNodeRValue*>(node); exprRvalue != nullptr)
return evaluateRValue(exprRvalue);
else if (auto exprScopeResolution = dynamic_cast<ASTNodeScopeResolution*>(node); exprScopeResolution != nullptr)
return evaluateScopeResolution(exprScopeResolution);
else if (auto exprTernary = dynamic_cast<ASTNodeTernaryExpression*>(node); exprTernary != nullptr)
return evaluateTernaryExpression(exprTernary);
else if (auto exprFunctionCall = dynamic_cast<ASTNodeFunctionCall*>(node); exprFunctionCall != nullptr)
return evaluateFunctionCall(exprFunctionCall);
else
throwEvaluateError("invalid operand", node->getLineNumber());
}
ASTNodeIntegerLiteral* Evaluator::evaluateTernaryExpression(ASTNodeTernaryExpression *node) {
switch (node->getOperator()) {
case Token::Operator::TernaryConditional: {
auto condition = this->evaluateOperand(node->getFirstOperand());
SCOPE_EXIT( delete condition; );
if (std::visit([](auto &&value){ return value != 0; }, condition->getValue()))
return this->evaluateOperand(node->getSecondOperand());
else
return this->evaluateOperand(node->getThirdOperand());
}
default:
throwEvaluateError("invalid operator used in ternary expression", node->getLineNumber());
}
}
ASTNodeIntegerLiteral* Evaluator::evaluateMathematicalExpression(ASTNodeNumericExpression *node) {
auto leftInteger = this->evaluateOperand(node->getLeftOperand());
auto rightInteger = this->evaluateOperand(node->getRightOperand());
return evaluateOperator(leftInteger, rightInteger, node->getOperator());
}
PatternData* Evaluator::evaluateBuiltinType(ASTNodeBuiltinType *node) {
auto &type = node->getType();
auto typeSize = Token::getTypeSize(type);
PatternData *pattern;
if (type == Token::ValueType::Character)
pattern = new PatternDataCharacter(this->m_currOffset);
else if (type == Token::ValueType::Boolean)
pattern = new PatternDataBoolean(this->m_currOffset);
else if (Token::isUnsigned(type))
pattern = new PatternDataUnsigned(this->m_currOffset, typeSize);
else if (Token::isSigned(type))
pattern = new PatternDataSigned(this->m_currOffset, typeSize);
else if (Token::isFloatingPoint(type))
pattern = new PatternDataFloat(this->m_currOffset, typeSize);
else
throwEvaluateError("invalid builtin type", node->getLineNumber());
this->m_currOffset += typeSize;
pattern->setTypeName(Token::getTypeName(type));
return pattern;
}
std::vector<PatternData*> Evaluator::evaluateMember(ASTNode *node) {
this->m_currEndian.reset();
if (auto memberVariableNode = dynamic_cast<ASTNodeVariableDecl*>(node); memberVariableNode != nullptr)
return { this->evaluateVariable(memberVariableNode) };
else if (auto memberArrayNode = dynamic_cast<ASTNodeArrayVariableDecl*>(node); memberArrayNode != nullptr)
return { this->evaluateArray(memberArrayNode) };
else if (auto memberPointerNode = dynamic_cast<ASTNodePointerVariableDecl*>(node); memberPointerNode != nullptr)
return { this->evaluatePointer(memberPointerNode) };
else if (auto conditionalNode = dynamic_cast<ASTNodeConditionalStatement*>(node); conditionalNode != nullptr) {
auto condition = this->evaluateMathematicalExpression(static_cast<ASTNodeNumericExpression*>(conditionalNode->getCondition()));
std::vector<PatternData*> patterns;
if (std::visit([](auto &&value) { return value != 0; }, condition->getValue())) {
for (auto &statement : conditionalNode->getTrueBody()) {
auto statementPatterns = this->evaluateMember(statement);
std::copy(statementPatterns.begin(), statementPatterns.end(), std::back_inserter(patterns));
}
} else {
for (auto &statement : conditionalNode->getFalseBody()) {
auto statementPatterns = this->evaluateMember(statement);
std::copy(statementPatterns.begin(), statementPatterns.end(), std::back_inserter(patterns));
}
}
delete condition;
return patterns;
}
else
throwEvaluateError("invalid struct member", node->getLineNumber());
}
PatternData* Evaluator::evaluateStruct(ASTNodeStruct *node) {
std::vector<PatternData*> memberPatterns;
this->m_currMembers.push_back(&memberPatterns);
SCOPE_EXIT( this->m_currMembers.pop_back(); );
auto startOffset = this->m_currOffset;
for (auto &member : node->getMembers()) {
auto newMembers = this->evaluateMember(member);
std::copy(newMembers.begin(), newMembers.end(), std::back_inserter(memberPatterns));
}
return new PatternDataStruct(startOffset, this->m_currOffset - startOffset, memberPatterns);
}
PatternData* Evaluator::evaluateUnion(ASTNodeUnion *node) {
std::vector<PatternData*> memberPatterns;
this->m_currMembers.push_back(&memberPatterns);
SCOPE_EXIT( this->m_currMembers.pop_back(); );
auto startOffset = this->m_currOffset;
for (auto &member : node->getMembers()) {
auto newMembers = this->evaluateMember(member);
std::copy(newMembers.begin(), newMembers.end(), std::back_inserter(memberPatterns));
this->m_currOffset = startOffset;
}
return new PatternDataUnion(startOffset, this->m_currOffset - startOffset, memberPatterns);
}
PatternData* Evaluator::evaluateEnum(ASTNodeEnum *node) {
std::vector<std::pair<Token::IntegerLiteral, std::string>> entryPatterns;
auto startOffset = this->m_currOffset;
for (auto &[name, value] : node->getEntries()) {
auto expression = dynamic_cast<ASTNodeNumericExpression*>(value);
if (expression == nullptr)
throwEvaluateError("invalid expression in enum value", value->getLineNumber());
auto valueNode = evaluateMathematicalExpression(expression);
SCOPE_EXIT( delete valueNode; );
entryPatterns.push_back({{ valueNode->getType(), valueNode->getValue() }, name });
}
size_t size;
if (auto underlyingType = dynamic_cast<const ASTNodeBuiltinType*>(node->getUnderlyingType()); underlyingType != nullptr)
size = Token::getTypeSize(underlyingType->getType());
else
throwEvaluateError("invalid enum underlying type", node->getLineNumber());
return new PatternDataEnum(startOffset, size, entryPatterns);
}
PatternData* Evaluator::evaluateBitfield(ASTNodeBitfield *node) {
std::vector<std::pair<std::string, size_t>> entryPatterns;
auto startOffset = this->m_currOffset;
size_t bits = 0;
for (auto &[name, value] : node->getEntries()) {
auto expression = dynamic_cast<ASTNodeNumericExpression*>(value);
if (expression == nullptr)
throwEvaluateError("invalid expression in bitfield field size", value->getLineNumber());
auto valueNode = evaluateMathematicalExpression(expression);
SCOPE_EXIT( delete valueNode; );
auto fieldBits = std::visit([node, type = valueNode->getType()] (auto &&value) {
if (Token::isFloatingPoint(type))
throwEvaluateError("bitfield entry size must be an integer value", node->getLineNumber());
return static_cast<s128>(value);
}, valueNode->getValue());
if (fieldBits > 64 || fieldBits <= 0)
throwEvaluateError("bitfield entry must occupy between 1 and 64 bits", value->getLineNumber());
bits += fieldBits;
entryPatterns.emplace_back(name, fieldBits);
}
return new PatternDataBitfield(startOffset, (bits / 8) + 1, entryPatterns);
}
PatternData* Evaluator::evaluateType(ASTNodeTypeDecl *node) {
auto type = node->getType();
if (!this->m_currEndian.has_value())
this->m_currEndian = node->getEndian();
PatternData *pattern;
if (auto builtinTypeNode = dynamic_cast<ASTNodeBuiltinType*>(type); builtinTypeNode != nullptr)
return this->evaluateBuiltinType(builtinTypeNode);
else if (auto typeDeclNode = dynamic_cast<ASTNodeTypeDecl*>(type); typeDeclNode != nullptr)
pattern = this->evaluateType(typeDeclNode);
else if (auto structNode = dynamic_cast<ASTNodeStruct*>(type); structNode != nullptr)
pattern = this->evaluateStruct(structNode);
else if (auto unionNode = dynamic_cast<ASTNodeUnion*>(type); unionNode != nullptr)
pattern = this->evaluateUnion(unionNode);
else if (auto enumNode = dynamic_cast<ASTNodeEnum*>(type); enumNode != nullptr)
pattern = this->evaluateEnum(enumNode);
else if (auto bitfieldNode = dynamic_cast<ASTNodeBitfield*>(type); bitfieldNode != nullptr)
pattern = this->evaluateBitfield(bitfieldNode);
else
throwEvaluateError("type could not be evaluated", node->getLineNumber());
if (!node->getName().empty())
pattern->setTypeName(node->getName().data());
return pattern;
}
PatternData* Evaluator::evaluateVariable(ASTNodeVariableDecl *node) {
if (auto offset = dynamic_cast<ASTNodeNumericExpression*>(node->getPlacementOffset()); offset != nullptr) {
auto valueNode = evaluateMathematicalExpression(offset);
SCOPE_EXIT( delete valueNode; );
this->m_currOffset = std::visit([node, type = valueNode->getType()] (auto &&value) {
if (Token::isFloatingPoint(type))
throwEvaluateError("placement offset must be an integer value", node->getLineNumber());
return static_cast<u64>(value);
}, valueNode->getValue());
}
if (this->m_currOffset >= this->m_provider->getActualSize())
throwEvaluateError("array exceeds size of file", node->getLineNumber());
PatternData *pattern;
if (auto typeDecl = dynamic_cast<ASTNodeTypeDecl*>(node->getType()); typeDecl != nullptr)
pattern = this->evaluateType(typeDecl);
else if (auto builtinTypeDecl = dynamic_cast<ASTNodeBuiltinType*>(node->getType()); builtinTypeDecl != nullptr)
pattern = this->evaluateBuiltinType(builtinTypeDecl);
else
throwEvaluateError("ASTNodeVariableDecl had an invalid type. This is a bug!", 1);
pattern->setVariableName(node->getName().data());
pattern->setEndian(this->getCurrentEndian());
this->m_currEndian.reset();
return pattern;
}
PatternData* Evaluator::evaluateArray(ASTNodeArrayVariableDecl *node) {
if (auto offset = dynamic_cast<ASTNodeNumericExpression*>(node->getPlacementOffset()); offset != nullptr) {
auto valueNode = evaluateMathematicalExpression(offset);
SCOPE_EXIT( delete valueNode; );
this->m_currOffset = std::visit([node, type = valueNode->getType()] (auto &&value) {
if (Token::isFloatingPoint(type))
throwEvaluateError("placement offset must be an integer value", node->getLineNumber());
return static_cast<u64>(value);
}, valueNode->getValue());
}
auto startOffset = this->m_currOffset;
ASTNodeIntegerLiteral *valueNode;
if (auto sizeNumericExpression = dynamic_cast<ASTNodeNumericExpression*>(node->getSize()); sizeNumericExpression != nullptr)
valueNode = evaluateMathematicalExpression(sizeNumericExpression);
else
throwEvaluateError("array size not a numeric expression", node->getLineNumber());
SCOPE_EXIT( delete valueNode; );
auto arraySize = std::visit([node, type = valueNode->getType()] (auto &&value) {
if (Token::isFloatingPoint(type))
throwEvaluateError("array size must be an integer value", node->getLineNumber());
return static_cast<u64>(value);
}, valueNode->getValue());
if (auto typeDecl = dynamic_cast<ASTNodeTypeDecl*>(node->getType()); typeDecl != nullptr) {
if (auto builtinType = dynamic_cast<ASTNodeBuiltinType*>(typeDecl->getType()); builtinType != nullptr) {
if (builtinType->getType() == Token::ValueType::Padding) {
this->m_currOffset += arraySize;
return new PatternDataPadding(startOffset, arraySize);
}
}
}
std::vector<PatternData*> entries;
std::optional<u32> color;
for (s128 i = 0; i < arraySize; i++) {
PatternData *entry;
if (auto typeDecl = dynamic_cast<ASTNodeTypeDecl*>(node->getType()); typeDecl != nullptr)
entry = this->evaluateType(typeDecl);
else if (auto builtinTypeDecl = dynamic_cast<ASTNodeBuiltinType*>(node->getType()); builtinTypeDecl != nullptr) {
entry = this->evaluateBuiltinType(builtinTypeDecl);
}
else
throwEvaluateError("ASTNodeVariableDecl had an invalid type. This is a bug!", 1);
entry->setVariableName(hex::format("[%llu]", (u64)i));
entry->setEndian(this->getCurrentEndian());
if (!color.has_value())
color = entry->getColor();
entry->setColor(color.value_or(0));
entries.push_back(entry);
if (this->m_currOffset >= this->m_provider->getActualSize())
throwEvaluateError("array exceeds size of file", node->getLineNumber());
}
this->m_currEndian.reset();
PatternData *pattern;
if (entries.empty())
pattern = new PatternDataPadding(startOffset, 0);
else if (dynamic_cast<PatternDataCharacter*>(entries[0]))
pattern = new PatternDataString(startOffset, (this->m_currOffset - startOffset), color.value_or(0));
else
pattern = new PatternDataArray(startOffset, (this->m_currOffset - startOffset), entries, color.value_or(0));
pattern->setVariableName(node->getName().data());
return pattern;
}
PatternData* Evaluator::evaluatePointer(ASTNodePointerVariableDecl *node) {
s128 pointerOffset;
if (auto offset = dynamic_cast<ASTNodeNumericExpression*>(node->getPlacementOffset()); offset != nullptr) {
auto valueNode = evaluateMathematicalExpression(offset);
SCOPE_EXIT( delete valueNode; );
pointerOffset = std::visit([node, type = valueNode->getType()] (auto &&value) {
if (Token::isFloatingPoint(type))
throwEvaluateError("pointer offset must be an integer value", node->getLineNumber());
return static_cast<s128>(value);
}, valueNode->getValue());
this->m_currOffset = pointerOffset;
} else {
pointerOffset = this->m_currOffset;
}
PatternData *sizeType;
if (auto builtinTypeNode = dynamic_cast<ASTNodeBuiltinType*>(node->getSizeType()); builtinTypeNode != nullptr) {
sizeType = evaluateBuiltinType(builtinTypeNode);
} else
throwEvaluateError("Pointer size is not a builtin type", node->getLineNumber());
size_t pointerSize = sizeType->getSize();
delete sizeType;
u128 pointedAtOffset = 0;
this->m_provider->read(pointerOffset, &pointedAtOffset, pointerSize);
this->m_currOffset = pointedAtOffset;
auto pointedAt = evaluateType(dynamic_cast<ASTNodeTypeDecl*>(node->getType()));
this->m_currOffset = pointerOffset + pointerSize;
return new PatternDataPointer(pointerOffset, pointerSize, pointedAt);
}
std::optional<std::vector<PatternData*>> Evaluator::evaluate(const std::vector<ASTNode *> &ast) {
std::vector<PatternData*> patterns;
try {
for (const auto& node : ast) {
this->m_currEndian.reset();
if (auto variableDeclNode = dynamic_cast<ASTNodeVariableDecl*>(node); variableDeclNode != nullptr) {
patterns.push_back(this->evaluateVariable(variableDeclNode));
} else if (auto arrayDeclNode = dynamic_cast<ASTNodeArrayVariableDecl*>(node); arrayDeclNode != nullptr) {
patterns.push_back(this->evaluateArray(arrayDeclNode));
} else if (auto pointerDeclNode = dynamic_cast<ASTNodePointerVariableDecl*>(node); pointerDeclNode != nullptr) {
patterns.push_back(this->evaluatePointer(pointerDeclNode));
} else if (auto typeDeclNode = dynamic_cast<ASTNodeTypeDecl*>(node); typeDeclNode != nullptr) {
this->m_types[typeDeclNode->getName().data()] = typeDeclNode->getType();
}
}
} catch (EvaluateError &e) {
this->m_error = e;
return { };
}
return patterns;
}
}