feat: Greatly improved the IEEE754 tool (#1047)

I just realized one feature request existed about this tool and have
added a comment to it referring this pr. Errors and additions are
described in the fork commit already. I'm not sure if I should repeat
them here again. I have tested the changes thoroughly, but it is always
possible some fringe case was not tested and is incorrect. The tests
were done using the many similar online calculators for IEEE 754
floating point formats.
IEEE 745 floating point tool redesign modeled after 'float toy' web app
(http://evanw.github.io/float-toy/)

Streamlined output using colors and compact layout which can be further
simplified.
Chosen display mode (detailed or simplified) is automatically saved and
set on new sessions.
Edit the binary bits, the integer hexadecimal or the floating point
decimal values and the entire app will update with the change.
Supports the main IEEE745 standard formats (half, single and double
precision) together with custom formats of size <= 64 bits.
Each format choice uses and displays the number of significant decimal
digits defined by the mantissa size.
Added labels to identify the location of each bit box inside the binary
representation.
Satisfies round trip / idempotent (reproducing) conversion property
Added theme colors, radio buttons for display mode and a clear button
that resets the tool.
Removed previously and incorrectly added locale translation to various
labels and languages
Attempted to adhere to code style formatting using existing code as
example.
An effort was made to use preferred variable types and functions from
std namespace when appropriate.
Attempted to document code using comments. 

Not implemented / left to complete at an later time

Arbitrary width and precision formats. 
Extended precision formats.
Shortest string property.
hexadecimal floating point display and conversions.
This commit is contained in:
paxcut 2023-05-19 12:18:38 -07:00 committed by GitHub
parent 4ad66365d0
commit 3e4c4430d5
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
17 changed files with 644 additions and 149 deletions

View File

@ -26,6 +26,10 @@ enum ImGuiCustomCol {
ImGuiCustomCol_Highlight,
ImGuiCustomCol_IEEEToolSign,
ImGuiCustomCol_IEEEToolExp,
ImGuiCustomCol_IEEEToolMantissa,
ImGuiCustomCol_COUNT
};

View File

@ -369,6 +369,10 @@ namespace ImGui {
colors[ImGuiCustomCol_ToolbarBrown] = ImColor(219, 179, 119);
colors[ImGuiCustomCol_Highlight] = ImColor(77, 198, 155);
colors[ImGuiCustomCol_IEEEToolSign] = ImColor(93, 93, 127);
colors[ImGuiCustomCol_IEEEToolExp] = ImColor(93, 127, 93);
colors[ImGuiCustomCol_IEEEToolMantissa] = ImColor(127, 93, 93);
}
void StyleCustomColorsLight() {
@ -387,6 +391,10 @@ namespace ImGui {
colors[ImGuiCustomCol_ToolbarBrown] = ImColor(219, 179, 119);
colors[ImGuiCustomCol_Highlight] = ImColor(41, 151, 112);
colors[ImGuiCustomCol_IEEEToolSign] = ImColor(187, 187, 255);
colors[ImGuiCustomCol_IEEEToolExp] = ImColor(187, 255, 187);
colors[ImGuiCustomCol_IEEEToolMantissa] = ImColor(255, 187,187);
}
void StyleCustomColorsClassic() {
@ -405,6 +413,9 @@ namespace ImGui {
colors[ImGuiCustomCol_ToolbarBrown] = ImColor(219, 179, 119);
colors[ImGuiCustomCol_Highlight] = ImColor(77, 198, 155);
colors[ImGuiCustomCol_IEEEToolSign] = ImColor(93, 93, 127);
colors[ImGuiCustomCol_IEEEToolExp] = ImColor(93, 127, 93);
colors[ImGuiCustomCol_IEEEToolMantissa] = ImColor(127, 93, 93);
}
void OpenPopupInWindow(const char *window_name, const char *popup_name) {

View File

@ -482,6 +482,7 @@
"hex.builtin.tools.format.standard",
"hex.builtin.tools.history",
"hex.builtin.tools.ieee754",
"hex.builtin.tools.ieee754.clear",
"hex.builtin.tools.ieee754.description",
"hex.builtin.tools.ieee754.double_precision",
"hex.builtin.tools.ieee754.exponent",
@ -493,8 +494,10 @@
"hex.builtin.tools.ieee754.result.float",
"hex.builtin.tools.ieee754.result.hex",
"hex.builtin.tools.ieee754.result.title",
"hex.builtin.tools.ieee754.settings.display_mode.detailed",
"hex.builtin.tools.ieee754.settings.display_mode.simplified",
"hex.builtin.tools.ieee754.sign",
"hex.builtin.tools.ieee754.singe_precision",
"hex.builtin.tools.ieee754.single_precision",
"hex.builtin.tools.ieee754.type",
"hex.builtin.tools.invariant_multiplication",
"hex.builtin.tools.invariant_multiplication.description",

View File

@ -511,6 +511,7 @@
"hex.builtin.tools.format.standard": "Standard",
"hex.builtin.tools.history": "Verlauf",
"hex.builtin.tools.ieee754": "IEEE 754 Gleitkommazahl Tester",
"hex.builtin.tools.ieee754.clear": "",
"hex.builtin.tools.ieee754.description": "IEEE754 ist ein Standart zum representieren von Fliesskommazahlen welcher von den meisten modernen CPUs verwendet wird.\n\nDieses Tool visualisiert den internen aufbau einer Fliesskommazahl und ermöglicht das decodieren von Zahlen, welche eine nicht-standardmässige Anzahl von Mantissa oder Exponenten bits benutzen.",
"hex.builtin.tools.ieee754.double_precision": "Doppelte Genauigkeit",
"hex.builtin.tools.ieee754.exponent": "Exponent",
@ -522,8 +523,10 @@
"hex.builtin.tools.ieee754.result.float": "Gleitkomma Resultat",
"hex.builtin.tools.ieee754.result.hex": "Hexadezimal Resultat",
"hex.builtin.tools.ieee754.result.title": "Resultat",
"hex.builtin.tools.ieee754.settings.display_mode.detailed": "",
"hex.builtin.tools.ieee754.settings.display_mode.simplified": "",
"hex.builtin.tools.ieee754.sign": "Vorzeichen",
"hex.builtin.tools.ieee754.singe_precision": "Einfache Genauigkeit",
"hex.builtin.tools.ieee754.single_precision": "Einfache Genauigkeit",
"hex.builtin.tools.ieee754.type": "Typ",
"hex.builtin.tools.input": "Input",
"hex.builtin.tools.invariant_multiplication": "Division durch invariante Multiplikation",

View File

@ -535,8 +535,9 @@
"hex.builtin.tools.format.scientific": "Scientific",
"hex.builtin.tools.format.standard": "Standard",
"hex.builtin.tools.history": "History",
"hex.builtin.tools.ieee754": "IEEE 754 Floating Point Decoder",
"hex.builtin.tools.ieee754.description": "IEEE754 is a standard for representing floating point numbers which is used by most modern CPUs.\n\nThis tool visualizes the internal representation of a floating point number and allows decoding of numbers with a non-standard number of mantissa or exponent bits.",
"hex.builtin.tools.ieee754": "IEEE 754 Floating Point Encoder and Decoder",
"hex.builtin.tools.ieee754.clear": "Clear",
"hex.builtin.tools.ieee754.description": "IEEE754 is a standard for representing floating point numbers which is used by most modern CPUs.\n\nThis tool visualizes the internal representation of a floating point number and allows decoding amd encoding of numbers with a non-standard number of mantissa or exponent bits.",
"hex.builtin.tools.ieee754.double_precision": "Double Precision",
"hex.builtin.tools.ieee754.exponent": "Exponent",
"hex.builtin.tools.ieee754.exponent_size": "Exponent Size",
@ -547,8 +548,10 @@
"hex.builtin.tools.ieee754.result.float": "Floating Point Result",
"hex.builtin.tools.ieee754.result.hex": "Hexadecimal Result",
"hex.builtin.tools.ieee754.result.title": "Result",
"hex.builtin.tools.ieee754.settings.display_mode.detailed": "Detailed",
"hex.builtin.tools.ieee754.settings.display_mode.simplified": "Simplified",
"hex.builtin.tools.ieee754.sign": "Sign",
"hex.builtin.tools.ieee754.singe_precision": "Single Precision",
"hex.builtin.tools.ieee754.single_precision": "Single Precision",
"hex.builtin.tools.ieee754.type": "Type",
"hex.builtin.tools.invariant_multiplication": "Division by invariant Multiplication",
"hex.builtin.tools.invariant_multiplication.description": "Division by invariant multiplication is a technique often used by compilers to optimize integer division by a constant into a multiplication followed by a shift. The reason for this is that divisions often take many times more clock cycles than multiplications do.\n\nThis tool can be used to calculate the multiplier from the divisor or the divisor from the multiplier.",

View File

@ -526,6 +526,7 @@
"hex.builtin.tools.format.standard": "Estándar",
"hex.builtin.tools.history": "Historial",
"hex.builtin.tools.ieee754": "Decodificador de Puntos Flotantes IEEE 754",
"hex.builtin.tools.ieee754.clear": "",
"hex.builtin.tools.ieee754.description": "IEEE754 es un estándar de representación de números de punto flotanre utilizado por la mayoría de CPUs modernas.\n\nEsta herramienta visualiza la representación interna de un flotante y permite decodificar números con una cantidad no estándar de bits del exponente / mantisa.",
"hex.builtin.tools.ieee754.double_precision": "Doble Precisión",
"hex.builtin.tools.ieee754.exponent": "Exponente",
@ -537,8 +538,10 @@
"hex.builtin.tools.ieee754.result.float": "Resultado de Punto Flotante",
"hex.builtin.tools.ieee754.result.hex": "Resultado Hexadecimal",
"hex.builtin.tools.ieee754.result.title": "Resultado",
"hex.builtin.tools.ieee754.settings.display_mode.detailed": "",
"hex.builtin.tools.ieee754.settings.display_mode.simplified": "",
"hex.builtin.tools.ieee754.sign": "Signo",
"hex.builtin.tools.ieee754.singe_precision": "Precisión Sencilla",
"hex.builtin.tools.ieee754.single_precision": "Precisión Sencilla",
"hex.builtin.tools.ieee754.type": "Tipo",
"hex.builtin.tools.input": "Entrada",
"hex.builtin.tools.invariant_multiplication": "División mediante multiplicación invariante",

View File

@ -510,6 +510,7 @@
"hex.builtin.tools.format.standard": "Standard",
"hex.builtin.tools.history": "Storia",
"hex.builtin.tools.ieee754": "",
"hex.builtin.tools.ieee754.clear": "",
"hex.builtin.tools.ieee754.description": "",
"hex.builtin.tools.ieee754.double_precision": "",
"hex.builtin.tools.ieee754.exponent": "",
@ -521,16 +522,17 @@
"hex.builtin.tools.ieee754.result.float": "",
"hex.builtin.tools.ieee754.result.hex": "",
"hex.builtin.tools.ieee754.result.title": "",
"hex.builtin.tools.ieee754.settings.display_mode.detailed": "",
"hex.builtin.tools.ieee754.settings.display_mode.simplified": "",
"hex.builtin.tools.ieee754.sign": "",
"hex.builtin.tools.ieee754.singe_precision": "",
"hex.builtin.tools.ieee754.type": "",
"hex.builtin.tools.input": "Input",
"hex.builtin.tools.ieee754.single_precision": "",
"hex.builtin.tools.invariant_multiplication": "",
"hex.builtin.tools.invariant_multiplication.description": "",
"hex.builtin.tools.invariant_multiplication.num_bits": "",
"hex.builtin.tools.name": "Nome",
"hex.builtin.tools.input": "Input",
"hex.builtin.tools.output": "",
"hex.builtin.tools.permissions": "Calcolatrice dei permessi UNIX",
"hex.builtin.tools.name": "Nome",
"hex.builtin.tools.permissions": "",
"hex.builtin.tools.permissions.absolute": "Notazione assoluta",
"hex.builtin.tools.permissions.perm_bits": "Bit di autorizzazione",
"hex.builtin.tools.permissions.setgid_error": "Il gruppo deve avere diritti di esecuzione per applicare il bit setgid!",

View File

@ -510,6 +510,7 @@
"hex.builtin.tools.format.standard": "基本",
"hex.builtin.tools.history": "履歴",
"hex.builtin.tools.ieee754": "",
"hex.builtin.tools.ieee754.clear": "",
"hex.builtin.tools.ieee754.description": "",
"hex.builtin.tools.ieee754.double_precision": "",
"hex.builtin.tools.ieee754.exponent": "",
@ -521,8 +522,10 @@
"hex.builtin.tools.ieee754.result.float": "",
"hex.builtin.tools.ieee754.result.hex": "",
"hex.builtin.tools.ieee754.result.title": "",
"hex.builtin.tools.ieee754.settings.display_mode.detailed": "",
"hex.builtin.tools.ieee754.settings.display_mode.simplified": "",
"hex.builtin.tools.ieee754.sign": "",
"hex.builtin.tools.ieee754.singe_precision": "",
"hex.builtin.tools.ieee754.single_precision": "",
"hex.builtin.tools.ieee754.type": "",
"hex.builtin.tools.input": "入力",
"hex.builtin.tools.invariant_multiplication": "",

View File

@ -510,6 +510,7 @@
"hex.builtin.tools.format.standard": "표준",
"hex.builtin.tools.history": "이력",
"hex.builtin.tools.ieee754": "IEEE 754 부동 소수점 테스트",
"hex.builtin.tools.ieee754.clear": "",
"hex.builtin.tools.ieee754.description": "",
"hex.builtin.tools.ieee754.double_precision": "Double Precision",
"hex.builtin.tools.ieee754.exponent": "지수부",
@ -521,8 +522,10 @@
"hex.builtin.tools.ieee754.result.float": "부동 소수점 결과",
"hex.builtin.tools.ieee754.result.hex": "16진수 결과",
"hex.builtin.tools.ieee754.result.title": "결과",
"hex.builtin.tools.ieee754.settings.display_mode.detailed": "",
"hex.builtin.tools.ieee754.settings.display_mode.simplified": "",
"hex.builtin.tools.ieee754.sign": "부포",
"hex.builtin.tools.ieee754.singe_precision": "Single Precision",
"hex.builtin.tools.ieee754.single_precision": "Single Precision",
"hex.builtin.tools.ieee754.type": "종류",
"hex.builtin.tools.input": "입력",
"hex.builtin.tools.invariant_multiplication": "",

View File

@ -510,6 +510,7 @@
"hex.builtin.tools.format.standard": "Standard",
"hex.builtin.tools.history": "History",
"hex.builtin.tools.ieee754": "IEEE 754 Floating Point Tester",
"hex.builtin.tools.ieee754.clear": "",
"hex.builtin.tools.ieee754.description": "",
"hex.builtin.tools.ieee754.double_precision": "Double Precision",
"hex.builtin.tools.ieee754.exponent": "Exponent",
@ -521,8 +522,10 @@
"hex.builtin.tools.ieee754.result.float": "Resultado de ponto flutuante",
"hex.builtin.tools.ieee754.result.hex": "Resultado Hexadecimal",
"hex.builtin.tools.ieee754.result.title": "Resultado",
"hex.builtin.tools.ieee754.settings.display_mode.detailed": "",
"hex.builtin.tools.ieee754.settings.display_mode.simplified": "",
"hex.builtin.tools.ieee754.sign": "Sign",
"hex.builtin.tools.ieee754.singe_precision": "Single Precision",
"hex.builtin.tools.ieee754.single_precision": "Single Precision",
"hex.builtin.tools.ieee754.type": "Tipo",
"hex.builtin.tools.input": "Input",
"hex.builtin.tools.invariant_multiplication": "",

View File

@ -482,6 +482,7 @@
"hex.builtin.tools.format.standard": "标准",
"hex.builtin.tools.history": "历史",
"hex.builtin.tools.ieee754": "IEEE 754 浮点数测试器",
"hex.builtin.tools.ieee754.clear": "",
"hex.builtin.tools.ieee754.description": "IEEE754 是大多数现代 CPU 使用的表示浮点数的标准。\n\n此工具可视化浮点数的内部表示并允许解码具有非标准数量的尾数或指数位的数字。",
"hex.builtin.tools.ieee754.double_precision": "双精度浮点数",
"hex.builtin.tools.ieee754.exponent": "指数",
@ -493,8 +494,10 @@
"hex.builtin.tools.ieee754.result.float": "十进制小数表示",
"hex.builtin.tools.ieee754.result.hex": "十六进制小数表示",
"hex.builtin.tools.ieee754.result.title": "结果",
"hex.builtin.tools.ieee754.settings.display_mode.detailed": "",
"hex.builtin.tools.ieee754.settings.display_mode.simplified": "",
"hex.builtin.tools.ieee754.sign": "符号",
"hex.builtin.tools.ieee754.singe_precision": "单精度浮点数",
"hex.builtin.tools.ieee754.single_precision": "单精度浮点数",
"hex.builtin.tools.ieee754.type": "部分",
"hex.builtin.tools.input": "输入",
"hex.builtin.tools.invariant_multiplication": "通过乘法除以常量",

View File

@ -510,6 +510,7 @@
"hex.builtin.tools.format.standard": "標準",
"hex.builtin.tools.history": "歷史",
"hex.builtin.tools.ieee754": "IEEE 754 浮點數測試工具",
"hex.builtin.tools.ieee754.clear": "",
"hex.builtin.tools.ieee754.description": "",
"hex.builtin.tools.ieee754.double_precision": "雙精度",
"hex.builtin.tools.ieee754.exponent": "指數",
@ -521,8 +522,10 @@
"hex.builtin.tools.ieee754.result.float": "浮點數結果",
"hex.builtin.tools.ieee754.result.hex": "十六進位結果",
"hex.builtin.tools.ieee754.result.title": "結果",
"hex.builtin.tools.ieee754.settings.display_mode.detailed": "",
"hex.builtin.tools.ieee754.settings.display_mode.simplified": "",
"hex.builtin.tools.ieee754.sign": "符號",
"hex.builtin.tools.ieee754.singe_precision": "單精度",
"hex.builtin.tools.ieee754.single_precision": "單精度",
"hex.builtin.tools.ieee754.type": "類型",
"hex.builtin.tools.input": "輸入",
"hex.builtin.tools.invariant_multiplication": "",

View File

@ -63,6 +63,9 @@
"desc-button-active": "#505078FF",
"desc-button-hovered": "#3C3C64FF",
"highlight": "#4DC69BFF",
"IEEE-tool-sign": "#5D5D7FFF",
"IEEE-tool-exp": "#5D7F5DFF",
"IEEE-tool-mantissa": "#7F5D5DFF",
"toolbar-blue": "#06539BFF",
"toolbar-brown": "#DBB377FF",
"toolbar-gray": "#E6E6E6FF",

View File

@ -63,6 +63,9 @@
"desc-button-active": "#3C3C3CFF",
"desc-button-hovered": "#282828FF",
"highlight": "#4DC69BFF",
"IEEE-tool-sign": "#5D5D7FFF",
"IEEE-tool-exp": "#5D7F5DFF",
"IEEE-tool-mantissa": "#7F5D5DFF",
"toolbar-blue": "#06539BFF",
"toolbar-brown": "#DBB377FF",
"toolbar-gray": "#E6E6E6FF",

View File

@ -63,6 +63,9 @@
"desc-button-active": "#BEBEBEFF",
"desc-button-hovered": "#D2D2D2FF",
"highlight": "#299770FF",
"IEEE-tool-sign": "#BBBBFFFF",
"IEEE-tool-exp": "#BBFFBBFF",
"IEEE-tool-mantissa": "#FFBBBBFF",
"toolbar-blue": "#06539BFF",
"toolbar-brown": "#DBB377FF",
"toolbar-gray": "#191919FF",

View File

@ -178,7 +178,11 @@ namespace hex::plugin::builtin {
{ "toolbar-blue", ImGuiCustomCol_ToolbarBlue },
{ "toolbar-purple", ImGuiCustomCol_ToolbarPurple },
{ "toolbar-brown", ImGuiCustomCol_ToolbarBrown },
{ "highlight", ImGuiCustomCol_Highlight }
{ "highlight", ImGuiCustomCol_Highlight },
{ "IEEE-tool-sign", ImGuiCustomCol_IEEEToolSign },
{ "IEEE-tool-exp", ImGuiCustomCol_IEEEToolExp },
{ "IEEE-tool-mantissa", ImGuiCustomCol_IEEEToolMantissa }
};
ThemeManager::addThemeHandler("imhex", ImHexColorMap,

View File

@ -9,7 +9,6 @@
#include <hex/api/localization.hpp>
#include <hex/ui/view.hpp>
#include <hex/providers/provider.hpp>
#include <algorithm>
#include <chrono>
@ -18,17 +17,15 @@
#include <llvm/Demangle/Demangle.h>
#include <content/helpers/math_evaluator.hpp>
#include <content/popups/popup_notification.hpp>
#include <imgui.h>
#define IMGUI_DEFINE_MATH_OPERATORS
#include <imgui_internal.h>
#include <hex/ui/imgui_imhex_extensions.h>
#include <content/popups/popup_notification.hpp>
#include <nlohmann/json.hpp>
#include <wolv/io/file.hpp>
#include <wolv/utils/guards.hpp>
#include <charconv>
namespace hex::plugin::builtin {
@ -1130,16 +1127,50 @@ namespace hex::plugin::builtin {
}
}
// Tool for converting between different number formats
// There are three places where input can be changed; the bit checkboxes, the hex input and the decimal input.
// The bit checkboxes and the hex input are directly related and can be converted between each other easily.
// The decimal input is a bit more complicated. IEEE 754 floating point numbers are represented as a sign bit,
// an exponent and a mantissa. For details see https://en.wikipedia.org/wiki/IEEE_754.
// Workflow is as follows:
// From the bit checkboxes determine the integer hex value. This is straightforward.
// From the hex value determine the binary floating point value by extracting the sign, exponent and mantissa.
// From the binary floating point value determine the decimal floating point value using third party library.
// From the decimal floating point we reconstruct the binary floating point value using internal hardware.
// If format is non-standard the reconstruction is done using properties of the format.
void drawIEEE754Decoder() {
static u128 value = 0x00;
static u128 value = 0;
static int exponentBitCount = 8, mantissaBitCount = 23;
long double exponentValue;
long double mantissaValue;
static long double resultFloat;
i64 exponentBias;
constexpr static auto flags = ImGuiInputTextFlags_EnterReturnsTrue;
enum class NumberKind {
Normal,
Zero,
Denormal,
Infinity,
NaN,
} numberKind;
enum class NumberType {
Regular,
SignalingNaN,
QuietNaN,
NegativeInfinity,
PositiveInfinity,
} numberType;
const static auto BitCheckbox = [](u8 bit) {
bool checkbox = false;
ImGui::PushStyleVar(ImGuiStyleVar_FrameBorderSize, 1.0f);
checkbox = (value & (u128(1) << bit)) != 0;
ImGui::BitCheckbox("##checkbox", &checkbox);
value = (value & ~(u128(1) << bit)) | (u128(checkbox) << bit);
ImGui::PopStyleVar();
};
const static auto BitCheckboxes = [](u32 startBit, u32 count) {
@ -1151,7 +1182,8 @@ namespace hex::plugin::builtin {
}
};
const auto totalBitCount = 1 + exponentBitCount + mantissaBitCount;
ImVec4 textColor = ImGui::GetStyleColorVec4(ImGuiCol_Text);
const auto totalBitCount = exponentBitCount + mantissaBitCount;
const auto signBitPosition = totalBitCount - 0;
const auto exponentBitPosition = totalBitCount - 1;
const auto mantissaBitPosition = totalBitCount - 1 - exponentBitCount;
@ -1160,179 +1192,585 @@ namespace hex::plugin::builtin {
return hex::extract(startBit, startBit - (count - 1), value);
};
const auto signBits = ExtractBits(signBitPosition, 1);
const auto exponentBits = ExtractBits(exponentBitPosition, exponentBitCount);
const auto mantissaBits = ExtractBits(mantissaBitPosition, mantissaBitCount);
const static auto DisplayBitLabels = [](u32 startBit, u32 count) {
// In this case we always label one box
if (count < 4) {
std::string labelString = "xx";
auto checkBoxWidth = ImGui::CalcTextSize(labelString.c_str()).x;
auto centerBox = count == 3 || count == 2 ? 1 : 0;
auto labelIndex = startBit - centerBox;
labelString = fmt::format("{}", labelIndex);
auto labelWidth = ImGui::CalcTextSize(labelString.c_str()).x;
auto indentSize = checkBoxWidth * centerBox;
auto centeredIndentSize = indentSize + checkBoxWidth / 2 - labelWidth / 2;
// Fix for imgui reposition bug only happens if first checkbox has label
if (centeredIndentSize == 0)
centeredIndentSize -= 1;
ImGui::Indent(centeredIndentSize);
ImGui::TextUnformatted(labelString.c_str());
ImGui::Unindent(centeredIndentSize);
} else {
auto columnWidth = ImGui::GetColumnWidth();
auto checkBoxWidth = columnWidth / count;
auto labelIndex = startBit - startBit % 4;
std::string labelString = fmt::format("{}", labelIndex);
auto labelWidth = ImGui::CalcTextSize(labelString.c_str()).x;
// indent size for checkbox
auto indentSize = (startBit % 4) * checkBoxWidth;
auto centeredIndentSize = indentSize + checkBoxWidth / 2 - labelWidth / 2;
// Fix for imgui reposition bug only happens if first checkbox has label
if (centeredIndentSize == 0)
centeredIndentSize -= 1;
ImGui::Indent(centeredIndentSize);
ImGui::TextUnformatted(labelString.c_str());
ImGui::Unindent(centeredIndentSize);
auto boxesLeft = count - (startBit % 4);
auto labelsLeft = boxesLeft / 4;
// If we have a multiple of 4 boxes left the last label belongs to mantissa
if (boxesLeft % 4 == 0)
labelsLeft--;
for (i64 i = 0; i < labelsLeft; i++) {
ImGui::SameLine();
labelIndex -= 4;
labelString = fmt::format("{}", labelIndex);
labelWidth = ImGui::CalcTextSize(labelString.c_str()).x;
indentSize += 4 * checkBoxWidth;
ImGui::Indent(indentSize + checkBoxWidth / 2 - labelWidth / 2);
ImGui::TextFormatted("{}", labelIndex);
ImGui::Unindent(indentSize + checkBoxWidth / 2 - labelWidth / 2);
}
}
};
i64 signBits = ExtractBits(signBitPosition, 1);
i64 exponentBits = ExtractBits(exponentBitPosition, exponentBitCount);
i64 mantissaBits = ExtractBits(mantissaBitPosition, mantissaBitCount);
static i64 inputFieldWidth = 0;
ImGui::TextFormattedWrapped("{}", "hex.builtin.tools.ieee754.description"_lang);
ImGui::NewLine();
if (ImGui::BeginTable("##outer", 4, ImGuiTableFlags_SizingFixedFit | ImGuiTableFlags_NoKeepColumnsVisible | ImGuiTableFlags_ScrollX, ImVec2(0, ImGui::GetTextLineHeightWithSpacing() * 4))) {
ImGui::TableSetupColumn("hex.builtin.tools.ieee754.sign"_lang);
ImGui::TableSetupColumn("hex.builtin.tools.ieee754.exponent"_lang);
ImGui::TableSetupColumn("hex.builtin.tools.ieee754.mantissa"_lang);
static i64 displayMode = ContentRegistry::Settings::read("hex.builtin.tools.ieee754.settings", "display_mode", 0);
i64 displayModeTemp = displayMode;
ImGui::RadioButton("hex.builtin.tools.ieee754.settings.display_mode.detailed"_lang, reinterpret_cast<int *>(&displayMode), 0);
ImGui::SameLine();
ImGui::RadioButton("hex.builtin.tools.ieee754.settings.display_mode.simplified"_lang, reinterpret_cast<int *>(&displayMode), 1);
if (displayModeTemp != displayMode) {
ContentRegistry::Settings::write("hex.builtin.tools.ieee754.settings", "display_mode", displayMode);
displayModeTemp = displayMode;
}
auto tableFlags = ImGuiTableFlags_SizingFixedFit | ImGuiTableFlags_NoKeepColumnsVisible | ImGuiTableFlags_ScrollX;
if (ImGui::BeginTable("##outer", 8, tableFlags, ImVec2(0, ImGui::GetTextLineHeightWithSpacing() * 5.5 ))) {
ImGui::TableSetupColumn("hex.builtin.tools.ieee754.result.title"_lang);
ImGui::TableSetupColumn("##equals");
ImGui::TableSetupColumn("hex.builtin.tools.ieee754.sign"_lang);
ImGui::TableSetupColumn("##times");
ImGui::TableSetupColumn("hex.builtin.tools.ieee754.exponent"_lang);
ImGui::TableSetupColumn("##times");
ImGui::TableSetupColumn("hex.builtin.tools.ieee754.mantissa"_lang);
ImGui::TableHeadersRow();
ImGui::TableNextRow();
// Row for bit labels. Due to font size constrains each bit cannot have its own label.
// Instead, we label each 4 bits and then use the bit position to determine the bit label.
// Result
ImGui::TableNextColumn();
// Equals
ImGui::TableNextColumn();
// Sign bit label is always shown
ImGui::TableNextColumn();
std::string labelString = fmt::format("{}",totalBitCount+1);
auto columnWidth = ImGui::GetColumnWidth();
auto checkBoxWidth = columnWidth - 20_scaled;
auto labelWidth = ImGui::CalcTextSize(labelString.c_str()).x;
auto indentSize = 20_scaled + checkBoxWidth /2 - labelWidth / 2;
ImGui::Indent(indentSize);
ImGui::TextUnformatted(labelString.c_str());
ImGui::Unindent(indentSize);
// Times
ImGui::TableNextColumn();
// Exponent
ImGui::TableNextColumn();
DisplayBitLabels(exponentBitPosition + 1, exponentBitCount);
// Times
ImGui::TableNextColumn();
// Mantissa
ImGui::TableNextColumn();
DisplayBitLabels(mantissaBitPosition + 1, mantissaBitCount);
ImGui::TableNextRow();
// Row for bit checkboxes
// Result
ImGui::TableNextColumn();
u64 mask = hex::bitmask(totalBitCount+1);
std::string maskString = hex::format("0x{:X} ", mask);
auto style = ImGui::GetStyle();
inputFieldWidth = std::fmax(inputFieldWidth, ImGui::CalcTextSize(maskString.c_str()).x + style.FramePadding.x * 2.0f);
ImGui::PushItemWidth(inputFieldWidth);
u64 newValue = value & mask;
if (ImGui::InputHexadecimal("##hex", &newValue, flags))
value = newValue;
ImGui::PopItemWidth();
// Equals
ImGui::TableNextColumn();
ImGui::Text("=");
// Sign
ImGui::TableNextColumn();
ImVec4 signColor = ImGui::GetCustomColorVec4(ImGuiCustomCol_IEEEToolSign);
ImVec4 expColor = ImGui::GetCustomColorVec4(ImGuiCustomCol_IEEEToolExp);
ImVec4 mantColor = ImGui::GetCustomColorVec4(ImGuiCustomCol_IEEEToolMantissa);
ImVec4 black = ImVec4(0.0, 0.0, 0.0, 1.0);
ImGui::Indent(20_scaled);
ImGui::PushStyleColor(ImGuiCol_FrameBg, signColor);
ImGui::PushStyleColor(ImGuiCol_Border, black);
BitCheckboxes(signBitPosition, 1);
ImGui::PopStyleColor();
ImGui::PopStyleColor();
ImGui::Unindent(20_scaled);
// Times
ImGui::TableNextColumn();
// Exponent
ImGui::TableNextColumn();
ImGui::PushStyleColor(ImGuiCol_FrameBg, expColor);
ImGui::PushStyleColor(ImGuiCol_Border, black);
BitCheckboxes(exponentBitPosition, exponentBitCount);
// Exponent
ImGui::PopStyleColor();
ImGui::PopStyleColor();
// Times
ImGui::TableNextColumn();
// Mantissa
ImGui::TableNextColumn();
ImGui::PushStyleColor(ImGuiCol_FrameBg, mantColor);
ImGui::PushStyleColor(ImGuiCol_Border, black);
BitCheckboxes(mantissaBitPosition, mantissaBitCount);
ImGui::EndTable();
}
ImGui::PopStyleColor();
ImGui::PopStyleColor();
{
ImGui::SliderInt("hex.builtin.tools.ieee754.exponent_size"_lang, &exponentBitCount, 1, 128 - mantissaBitCount);
ImGui::SliderInt("hex.builtin.tools.ieee754.mantissa_size"_lang, &mantissaBitCount, 1, 128 - exponentBitCount);
ImGui::TableNextRow();
ImGui::TableNextColumn();
ImGui::Separator();
exponentBias = (u128(1) << (exponentBitCount - 1)) - 1;
if (ImGui::Button("hex.builtin.tools.ieee754.half_precision"_lang)) { exponentBitCount = 5; mantissaBitCount = 10; }
ImGui::SameLine();
if (ImGui::Button("hex.builtin.tools.ieee754.singe_precision"_lang)) { exponentBitCount = 8; mantissaBitCount = 23; }
ImGui::SameLine();
if (ImGui::Button("hex.builtin.tools.ieee754.double_precision"_lang)) { exponentBitCount = 11; mantissaBitCount = 52; }
long double signValue = signBits == 0 ? 1.0 : -1.0;
ImGui::Separator();
ImGui::NewLine();
}
{
const auto exponentBias = (u128(1) << (exponentBitCount - 1)) - 1;
long double signValue = signBits == 0 ? 1 : -1;
long double exponentValue = exponentBits == 0 ? 0 : std::pow<long double>(2, i64(i128(exponentBits) - i128(exponentBias)));
long double mantissaValue = [mantissaBitPosition] {
long double mantissa = 1.0;
for (i32 bit = 0; bit < mantissaBitCount; bit++) {
if (hex::extract(mantissaBitPosition - bit, mantissaBitPosition - bit, value) != 0)
mantissa += 1.0 / static_cast<long double>(u128(1) << (bit + 1));
// Zero or denormal
if (exponentBits == 0) {
// result doesn't fit in 128 bits
if ((exponentBias - 1) > 128)
exponentValue = std::pow(2.0L, static_cast<long double>(-exponentBias + 1));
else {
if (exponentBias == 0) {
// exponent is zero
if (mantissaBits == 0)
exponentValue = 1.0;
else
// exponent is one
exponentValue = 2.0;
}
else
exponentValue = 1.0 / static_cast<long double>(u128(1) << (exponentBias - 1));
}
}
// Normal
else {
// result doesn't fit in 128 bits
if (std::abs(exponentBits - exponentBias) > 128)
exponentValue = std::pow(2.0L, static_cast<long double>(exponentBits - exponentBias));
//result fits in 128 bits
else {
// exponent is positive
if (exponentBits > exponentBias)
exponentValue = static_cast<long double>(u128(1) << (exponentBits - exponentBias));
// exponent is negative
else if (exponentBits < exponentBias)
exponentValue = 1.0 / static_cast<long double>(u128(1) << (exponentBias - exponentBits));
// exponent is zero
else exponentValue = 1.0;
}
}
return mantissa;
}();
mantissaValue = static_cast<long double>(mantissaBits) / static_cast<long double>(u128(1) << (mantissaBitCount));
if (exponentBits != 0)
mantissaValue += 1.0;
enum class NumberType {
Regular,
SignalingNaN,
QuietNaN,
NegativeInfinity,
PositiveInfinity
} numberType = NumberType::Regular;
if (std::popcount(exponentBits) == exponentBitCount) {
// Check if all exponent bits are set.
if (std::popcount(static_cast<u64>(exponentBits)) == static_cast<i64>(exponentBitCount)) {
// if fraction is zero number is infinity.
if (mantissaBits == 0) {
if (signBits == 0)
if (signBits == 0) {
numberType = NumberType::PositiveInfinity;
else
resultFloat = std::numeric_limits<long double>::infinity();
} else {
numberType = NumberType::NegativeInfinity;
resultFloat = -std::numeric_limits<long double>::infinity();
}
numberKind = NumberKind::Infinity;
// otherwise number is NaN.
} else {
if (mantissaBits & (u128(1) << (mantissaBitCount - 1)))
if (mantissaBits & (u128(1) << (mantissaBitCount - 1))) {
numberType = NumberType::QuietNaN;
else
resultFloat = std::numeric_limits<long double>::quiet_NaN();
} else {
numberType = NumberType::SignalingNaN;
resultFloat = std::numeric_limits<long double>::signaling_NaN();
}
numberKind = NumberKind::NaN;
}
// if all exponent bits are zero, but we have a non-zero fraction
// then the number is denormal which are smaller than regular numbers
// but not as precise.
} else if (exponentBits == 0 && mantissaBits != 0) {
numberKind = NumberKind::Denormal;
numberType = NumberType::Regular;
resultFloat = signValue * exponentValue * mantissaValue;
} else {
numberKind = NumberKind::Normal;
numberType = NumberType::Regular;
resultFloat = signValue * exponentValue * mantissaValue;
}
i64 precision;
if (numberKind == NumberKind::Denormal)
precision = std::ceil(1+mantissaBitCount * std::log10(2.0L));
else
precision = std::ceil(1+(mantissaBitCount + 1) * std::log10(2.0L));
if (ImGui::BeginTable("##result", 5, ImGuiTableFlags_RowBg | ImGuiTableFlags_SizingFixedFit)) {
ImGui::TableSetupColumn("hex.builtin.tools.ieee754.type"_lang, ImGuiTableColumnFlags_IndentEnable);
ImGui::TableSetupColumn("##padding", ImGuiTableColumnFlags_WidthFixed, 30_scaled);
ImGui::TableSetupColumn("hex.builtin.tools.ieee754.formula"_lang);
ImGui::TableSetupColumn("##equals");
ImGui::TableSetupColumn("hex.builtin.tools.ieee754.result.title"_lang);
// For C++ from_chars is better than strtold.
// the main problem is that from_chars will not process special numbers
// like inf and nan, so we handle them manually
static std::string decimalFloatingPointNumberString;
static std::string_view decimalStrView;
// use qnan for quiet NaN and snan for signaling NaN
if (numberKind == NumberKind::NaN) {
if (numberType == NumberType::QuietNaN)
decimalFloatingPointNumberString = "qnan";
else
decimalFloatingPointNumberString = "snan";
} else
decimalFloatingPointNumberString = fmt::format("{:.{}}", resultFloat, precision);
ImGui::TableHeadersRow();
auto style1 = ImGui::GetStyle();
inputFieldWidth = std::fmax(inputFieldWidth, ImGui::CalcTextSize(decimalFloatingPointNumberString.c_str()).x + 2 * style1.FramePadding.x);
ImGui::PushItemWidth(inputFieldWidth);
enum class InputType { infinity, notANumber, quietNotANumber, signalingNotANumber, regular, invalid };
std::string specialNumbers[] = {"inf", "Inf", "INF", "nan", "Nan", "NAN", "qnan", "Qnan", "QNAN", "snan", "Snan", "SNAN"};
ImGui::TableNextRow();
// We allow any input in order to accept infinities and NaNs, all invalid entries
// are detected by from_chars. You can also enter -0 or -inf.
std::from_chars_result res;
if (ImGui::InputText("##resultFloat", decimalFloatingPointNumberString, flags)) {
// Always obtain sign first.
if (decimalFloatingPointNumberString[0] == '-') {
// and remove it from the string.
signBits = 1;
decimalFloatingPointNumberString.erase(0, 1);
} else
//important to switch from - to +.
signBits = 0;
ImGui::TableNextColumn();
ImGui::TextUnformatted("hex.builtin.tools.ieee754.sign"_lang);
ImGui::TableNextColumn();
ImGui::TableNextColumn();
ImGui::TextFormatted("(-1)^{0}", signBits);
ImGui::TableNextColumn();
ImGui::TextUnformatted("=");
ImGui::TableNextColumn();
ImGui::TextFormatted("{0}", signValue);
ImGui::TableNextColumn();
ImGui::TextUnformatted("hex.builtin.tools.ieee754.exponent"_lang);
ImGui::TableNextColumn();
ImGui::TableNextColumn();
ImGui::TextFormatted("2^({0} - {1})", exponentBits, exponentBias);
ImGui::TableNextColumn();
ImGui::TextUnformatted("=");
ImGui::TableNextColumn();
ImGui::TextFormatted("{0:.8G}", exponentValue);
ImGui::TableNextColumn();
ImGui::TextUnformatted("hex.builtin.tools.ieee754.mantissa"_lang);
ImGui::TableNextColumn();
ImGui::TableNextColumn();
ImGui::TextFormatted("1.0 + 0x{0:02X}", mantissaBits);
ImGui::TableNextColumn();
ImGui::TextUnformatted("=");
ImGui::TableNextColumn();
ImGui::TextFormatted("{0:.8G}", mantissaValue);
ImGui::TableNextRow();
ImGui::TextUnformatted(" ");
ImGui::Separator();
ImGui::TableNextRow();
ImGui::TableNextColumn();
ImGui::TextUnformatted("hex.builtin.tools.ieee754.result.float"_lang);
ImGui::TableNextColumn();
ImGui::TableNextColumn();
ImGui::TextFormatted("{0} * {1:.8G} * {2:.8G}", signValue, exponentValue, mantissaValue);
ImGui::TableNextColumn();
ImGui::TextUnformatted("=");
ImGui::TableNextColumn();
switch (numberType) {
using enum NumberType;
case NumberType::Regular:
ImGui::TextFormatted("{0:.8G}", signValue * exponentValue * mantissaValue);
break;
case NumberType::SignalingNaN:
ImGui::TextUnformatted("Signaling NaN");
break;
case NumberType::QuietNaN:
ImGui::TextUnformatted("Quiet NaN");
break;
case NumberType::NegativeInfinity:
ImGui::TextUnformatted("-Inf");
break;
case NumberType::PositiveInfinity:
ImGui::TextUnformatted("Inf");
InputType inputType;
bool matchFound = false;
i32 i;
// detect and use special numbers.
for (i = 0; i < 12; i++) {
if (decimalFloatingPointNumberString == specialNumbers[i]) {
inputType = InputType(i/3);
matchFound = true;
break;
}
}
ImGui::TableNextColumn();
ImGui::TextUnformatted("hex.builtin.tools.ieee754.result.hex"_lang);
ImGui::TableNextColumn();
ImGui::TableNextColumn();
ImGui::TableNextColumn();
ImGui::TextUnformatted("=");
ImGui::TableNextColumn();
ImGui::TextFormatted("0x{0:02X}", value);
if (!matchFound)
inputType = InputType::regular;
ImGui::EndTable();
if (inputType == InputType::regular) {
decimalStrView = decimalFloatingPointNumberString;
res = std::from_chars(decimalStrView.data(), decimalStrView.data() + decimalStrView.size(), resultFloat);
// this is why we use from_chars
if (res.ec != std::errc()) {
inputType = InputType::invalid;
}
} else if (inputType == InputType::infinity) {
resultFloat = std::numeric_limits<long double>::infinity();
resultFloat *= (signBits == 1 ? -1 : 1);
} else if (inputType == InputType::notANumber)
resultFloat = std::numeric_limits<long double>::quiet_NaN();
else if (inputType == InputType::quietNotANumber)
resultFloat = std::numeric_limits<long double>::quiet_NaN();
else if (inputType == InputType::signalingNotANumber)
resultFloat = std::numeric_limits<long double>::signaling_NaN();
long double log2Result;
if (inputType != InputType::invalid) {
// deal with zero first so we can use log2.
if (resultFloat == 0.0) {
if (signBits == 1)
resultFloat = -0.0;
else
resultFloat = 0.0;
numberKind = NumberKind::Zero;
numberType = NumberType::Regular;
exponentBits = 0;
mantissaBits = 0;
} else {
log2Result = std::log2(resultFloat);
// 2^(bias+1)-2^(bias-prec) is the largest number that can be represented.
// If the number entered is larger than this then the input is set to infinity.
if (resultFloat > (std::pow(2.0L, exponentBias + 1) - std::pow(2.0L, exponentBias - mantissaBitCount)) || inputType == InputType::infinity ) {
resultFloat = std::numeric_limits<long double>::infinity();
numberKind = NumberKind::Infinity;
numberType = signBits == 1 ? NumberType::NegativeInfinity : NumberType::PositiveInfinity;
exponentBits = (u128(1) << exponentBitCount) - 1;
mantissaBits = 0;
} else if (-std::rint(log2Result) > exponentBias + mantissaBitCount - 1) {
// 1/2^(bias-1+prec) is the smallest number that can be represented.
// If the number entered is smaller than this then the input is set to zero.
if (signBits == 1)
resultFloat = -0.0;
else
resultFloat = 0.0;
numberKind = NumberKind::Zero;
numberType = NumberType::Regular;
exponentBits = 0;
mantissaBits = 0;
} else if (inputType == InputType::signalingNotANumber) {
resultFloat = std::numeric_limits<long double>::signaling_NaN();
numberType = NumberType::SignalingNaN;
numberKind = NumberKind::NaN;
exponentBits = (u128(1) << exponentBitCount) - 1;
mantissaBits = 1;
} else if (inputType == InputType::quietNotANumber || inputType == InputType::notANumber ) {
resultFloat = std::numeric_limits<long double>::quiet_NaN();
numberType = NumberType::QuietNaN;
numberKind = NumberKind::NaN;
exponentBits = (u128(1) << exponentBitCount) - 1;
mantissaBits = (u128(1) << (mantissaBitCount - 1));
} else if (static_cast<i64>(std::floor(log2Result)) + exponentBias <= 0) {
numberKind = NumberKind::Denormal;
numberType = NumberType::Regular;
exponentBits = 0;
auto mantissaExp = log2Result + exponentBias + mantissaBitCount - 1;
mantissaBits = static_cast<i64>(std::round(std::pow(2.0L, mantissaExp)));
} else {
numberType = NumberType::Regular;
numberKind = NumberKind::Normal;
i64 unBiasedExponent = static_cast<i64>(std::floor(log2Result));
exponentBits = unBiasedExponent + exponentBias;
mantissaValue = resultFloat * std::pow(2.0L, -unBiasedExponent) - 1;
mantissaBits = static_cast<i64>(std::round( static_cast<long double>(u128(1) << (mantissaBitCount)) * mantissaValue));
}
}
// Put the bits together.
value = (signBits << (totalBitCount)) | (exponentBits << (totalBitCount - exponentBitCount)) | mantissaBits;
}
}
ImGui::PopItemWidth();
if (displayMode == 0) {
unsigned signColorU32 = ImGui::GetCustomColorU32(ImGuiCustomCol_IEEEToolSign);
unsigned expColorU32 = ImGui::GetCustomColorU32(ImGuiCustomCol_IEEEToolExp);
unsigned mantColorU32 = ImGui::GetCustomColorU32(ImGuiCustomCol_IEEEToolMantissa);
ImGui::TableNextColumn();
ImGui::Text("=");
// Sign
ImGui::TableNextColumn();
// this has the effect of dimming the color of the numbers so user doesn't try
// to interact with them.
ImGui::BeginDisabled();
ImGui::PushStyleColor(ImGuiCol_Text, textColor);
ImGui::Indent(20_scaled);
ImGui::TableSetBgColor(ImGuiTableBgTarget_CellBg, signColorU32);
if (signBits == 1)
ImGui::Text("-1");
else
ImGui::Text("+1");
ImGui::Unindent(20_scaled);
//times
ImGui::TableNextColumn();
ImGui::Text("x");
ImGui::TableNextColumn();
// Exponent
ImGui::TableSetBgColor(ImGuiTableBgTarget_CellBg, expColorU32);
ImGui::Indent(20_scaled);
if (numberKind == NumberKind::NaN) {
if (numberType == NumberType::QuietNaN) {
ImGui::Text("qNaN");
} else {
ImGui::Text("sNaN");
}
} else if (numberKind == NumberKind::Infinity) {
ImGui::Text("Inf");
} else if (numberKind == NumberKind::Zero) {
ImGui::Text("0");
} else if (numberKind == NumberKind::Denormal) {
ImGui::TextFormatted("2^{0}", 1 - exponentBias);
} else {
ImGui::TextFormatted("2^{0}", exponentBits - exponentBias);
}
ImGui::Unindent(20_scaled);
//times
ImGui::TableNextColumn();
ImGui::Text("x");
ImGui::TableNextColumn();
// Mantissa
ImGui::TableSetBgColor(ImGuiTableBgTarget_CellBg, mantColorU32);
ImGui::Indent(20_scaled);
ImGui::TextFormatted("{:.{}}", mantissaValue,precision);
ImGui::Unindent(20_scaled);
ImGui::PopStyleColor();
ImGui::EndDisabled();
}
ImGui::EndTable();
}
// we are done. The rest selects the format if user interacts with the widgets.
// If precision and exponent match one of the IEEE 754 formats the format is highlighted
// and remains highlighted until user changes to a different format. Matching formats occur when
// the user clicks on one of the selections or if the slider values match the format in question.
// when a new format is selected it may have a smaller number of digits than
// the previous selection. Since the largest of the hexadecimal and the decimal
// representation widths sets both field widths to the same value we need to
// reset it here when a new choice is set.
if (ImGui::SliderInt("hex.builtin.tools.ieee754.exponent_size"_lang, &exponentBitCount, 1, 63 - mantissaBitCount))
inputFieldWidth = 0;
if (ImGui::SliderInt("hex.builtin.tools.ieee754.mantissa_size"_lang, &mantissaBitCount, 1, 63 - exponentBitCount))
inputFieldWidth = 0;
ImGui::Separator();
auto color = ImGui::GetColorU32(ImGuiCol_ButtonActive);
bool needsPop = false;
if (exponentBitCount == 5 && mantissaBitCount == 10) {
ImGui::PushStyleColor(ImGuiCol_Button, color);
needsPop = true;
}
if (ImGui::Button("hex.builtin.tools.ieee754.half_precision"_lang)) {
exponentBitCount = 5;
mantissaBitCount = 10;
inputFieldWidth = 0;
}
if (needsPop) ImGui::PopStyleColor();
ImGui::SameLine();
needsPop = false;
if (exponentBitCount == 8 && mantissaBitCount == 23) {
ImGui::PushStyleColor(ImGuiCol_Button, color);
needsPop = true;
}
if (ImGui::Button("hex.builtin.tools.ieee754.single_precision"_lang)) {
exponentBitCount = 8;
mantissaBitCount = 23;
inputFieldWidth = 0;
}
if (needsPop) ImGui::PopStyleColor();
ImGui::SameLine();
needsPop = false;
if (exponentBitCount == 11 && mantissaBitCount == 52) {
ImGui::PushStyleColor(ImGuiCol_Button, color);
needsPop = true;
}
if (ImGui::Button("hex.builtin.tools.ieee754.double_precision"_lang)) {
exponentBitCount = 11;
mantissaBitCount = 52;
inputFieldWidth = 0;
}
if (needsPop) ImGui::PopStyleColor();
ImGui::SameLine();
needsPop = false;
if (ImGui::Button("hex.builtin.tools.ieee754.clear"_lang))
//this will reset all interactive widgets to zero.
value = 0;
ImGui::Separator();
ImGui::NewLine();
}
void drawInvariantMultiplicationDecoder() {
static u64 divisor = 1;
static u64 multiplier = 1;