diff --git a/hash_cn/libhash/variant4_random_math.h b/hash_cn/libhash/variant4_random_math.h new file mode 100644 index 0000000..cb844c9 --- /dev/null +++ b/hash_cn/libhash/variant4_random_math.h @@ -0,0 +1,444 @@ +#ifndef VARIANT4_RANDOM_MATH_H +#define VARIANT4_RANDOM_MATH_H + +// Register size can be configured to either 32 bit (uint32_t) or 64 bit (uint64_t) +typedef uint32_t v4_reg; + +enum V4_Settings +{ + // Generate code with minimal theoretical latency = 45 cycles, which is equivalent to 15 multiplications + TOTAL_LATENCY = 15 * 3, + + // Always generate at least 60 instructions + NUM_INSTRUCTIONS_MIN = 60, + + // Never generate more than 70 instructions (final RET instruction doesn't count here) + NUM_INSTRUCTIONS_MAX = 70, + + // Available ALUs for MUL + // Modern CPUs typically have only 1 ALU which can do multiplications + ALU_COUNT_MUL = 1, + + // Total available ALUs + // Modern CPUs have 4 ALUs, but we use only 3 because random math executes together with other main loop code + ALU_COUNT = 3, +}; + +enum V4_InstructionList +{ + MUL, // a*b + ADD, // a+b + C, C is an unsigned 32-bit constant + SUB, // a-b + ROR, // rotate right "a" by "b & 31" bits + ROL, // rotate left "a" by "b & 31" bits + XOR, // a^b + RET, // finish execution + V4_INSTRUCTION_COUNT = RET, +}; + +// V4_InstructionDefinition is used to generate code from random data +// Every random sequence of bytes is a valid code +// +// There are 9 registers in total: +// - 4 variable registers +// - 5 constant registers initialized from loop variables +// This is why dst_index is 2 bits +enum V4_InstructionDefinition +{ + V4_OPCODE_BITS = 3, + V4_DST_INDEX_BITS = 2, + V4_SRC_INDEX_BITS = 3, +}; + +// uint32 seems to be faster +struct V4_Instruction +{ + uint8_t dst_index; + uint8_t src_index; + uint8_t opcode; + uint32_t C; +}; + +#ifndef FORCEINLINE +#if defined(__GNUC__) +#define FORCEINLINE __attribute__((always_inline)) inline +#elif defined(_MSC_VER) +#define FORCEINLINE __forceinline +#else +#define FORCEINLINE inline +#endif +#endif + +#ifndef UNREACHABLE_CODE +#if defined(__GNUC__) +#define UNREACHABLE_CODE __builtin_unreachable() +#elif defined(_MSC_VER) +#define UNREACHABLE_CODE __assume(false) +#else +#define UNREACHABLE_CODE +#endif +#endif + + +// Random math interpreter's loop is fully unrolled and inlined to achieve 100% branch prediction on CPU: +// every switch-case will point to the same destination on every iteration of Cryptonight main loop +// +// This is about as fast as it can get without using low-level machine code generation +static FORCEINLINE void v4_random_math(const struct V4_Instruction* code, v4_reg* r) +{ + enum + { + REG_BITS = sizeof(v4_reg) * 8, + }; + +#define V4_EXEC(i) \ + { \ + const struct V4_Instruction* op = code + i; \ + const v4_reg src = r[op->src_index]; \ + v4_reg* dst = r + op->dst_index; \ + switch (op->opcode) \ + { \ + case MUL: \ + *dst *= src; \ + break; \ + case ADD: \ + *dst += src + op->C; \ + break; \ + case SUB: \ + *dst -= src; \ + break; \ + case ROR: \ + { \ + const uint32_t shift = src % REG_BITS; \ + *dst = (*dst >> shift) | (*dst << ((REG_BITS - shift) % REG_BITS)); \ + } \ + break; \ + case ROL: \ + { \ + const uint32_t shift = src % REG_BITS; \ + *dst = (*dst << shift) | (*dst >> ((REG_BITS - shift) % REG_BITS)); \ + } \ + break; \ + case XOR: \ + *dst ^= src; \ + break; \ + case RET: \ + return; \ + default: \ + UNREACHABLE_CODE; \ + break; \ + } \ + } + +#define V4_EXEC_10(j) \ + V4_EXEC(j + 0) \ + V4_EXEC(j + 1) \ + V4_EXEC(j + 2) \ + V4_EXEC(j + 3) \ + V4_EXEC(j + 4) \ + V4_EXEC(j + 5) \ + V4_EXEC(j + 6) \ + V4_EXEC(j + 7) \ + V4_EXEC(j + 8) \ + V4_EXEC(j + 9) + + // Generated program can have 60 + a few more (usually 2-3) instructions to achieve required latency + // I've checked all block heights < 10,000,000 and here is the distribution of program sizes: + // + // 60 27960 + // 61 105054 + // 62 2452759 + // 63 5115997 + // 64 1022269 + // 65 1109635 + // 66 153145 + // 67 8550 + // 68 4529 + // 69 102 + + // Unroll 70 instructions here + V4_EXEC_10(0); // instructions 0-9 + V4_EXEC_10(10); // instructions 10-19 + V4_EXEC_10(20); // instructions 20-29 + V4_EXEC_10(30); // instructions 30-39 + V4_EXEC_10(40); // instructions 40-49 + V4_EXEC_10(50); // instructions 50-59 + V4_EXEC_10(60); // instructions 60-69 + +#undef V4_EXEC_10 +#undef V4_EXEC +} + +// If we don't have enough data available, generate more +static FORCEINLINE void check_data(size_t* data_index, const size_t bytes_needed, int8_t* data, const size_t data_size) +{ + if (*data_index + bytes_needed > data_size) + { + //hash_extra_blake(data, data_size, (char*) data); + blake((uint8_t *) data,data_size,(uint8_t *) data); + *data_index = 0; + } +} + +// Generates as many random math operations as possible with given latency and ALU restrictions +// "code" array must have space for NUM_INSTRUCTIONS_MAX+1 instructions +static inline int v4_random_math_init(struct V4_Instruction* code, const uint64_t height) +{ + // MUL is 3 cycles, 3-way addition and rotations are 2 cycles, SUB/XOR are 1 cycle + // These latencies match real-life instruction latencies for Intel CPUs starting from Sandy Bridge and up to Skylake/Coffee lake + // + // AMD Ryzen has the same latencies except 1-cycle ROR/ROL, so it'll be a bit faster than Intel Sandy Bridge and newer processors + // Surprisingly, Intel Nehalem also has 1-cycle ROR/ROL, so it'll also be faster than Intel Sandy Bridge and newer processors + // AMD Bulldozer has 4 cycles latency for MUL (slower than Intel) and 1 cycle for ROR/ROL (faster than Intel), so average performance will be the same + // Source: https://www.agner.org/optimize/instruction_tables.pdf + const int op_latency[V4_INSTRUCTION_COUNT] = { 3, 2, 1, 2, 2, 1 }; + + // Instruction latencies for theoretical ASIC implementation + const int asic_op_latency[V4_INSTRUCTION_COUNT] = { 3, 1, 1, 1, 1, 1 }; + + // Available ALUs for each instruction + const int op_ALUs[V4_INSTRUCTION_COUNT] = { ALU_COUNT_MUL, ALU_COUNT, ALU_COUNT, ALU_COUNT, ALU_COUNT, ALU_COUNT }; + + int8_t data[32]; + memset(data, 0, sizeof(data)); + uint64_t tmp = (height); + memcpy(data, &tmp, sizeof(uint64_t)); + data[20] = 0xda; // change seed + + // Set data_index past the last byte in data + // to trigger full data update with blake hash + // before we start using it + size_t data_index = sizeof(data); + + int code_size; + + // There is a small chance (1.8%) that register R8 won't be used in the generated program + // So we keep track of it and try again if it's not used + bool r8_used; + do { + int latency[9]; + int asic_latency[9]; + + // Tracks previous instruction and value of the source operand for registers R0-R3 throughout code execution + // byte 0: current value of the destination register + // byte 1: instruction opcode + // byte 2: current value of the source register + // + // Registers R4-R8 are constant and are treated as having the same value because when we do + // the same operation twice with two constant source registers, it can be optimized into a single operation + uint32_t inst_data[9] = { 0, 1, 2, 3, 0xFFFFFF, 0xFFFFFF, 0xFFFFFF, 0xFFFFFF, 0xFFFFFF }; + + bool alu_busy[TOTAL_LATENCY + 1][ALU_COUNT]; + bool is_rotation[V4_INSTRUCTION_COUNT]; + bool rotated[4]; + int rotate_count = 0; + + memset(latency, 0, sizeof(latency)); + memset(asic_latency, 0, sizeof(asic_latency)); + memset(alu_busy, 0, sizeof(alu_busy)); + memset(is_rotation, 0, sizeof(is_rotation)); + memset(rotated, 0, sizeof(rotated)); + is_rotation[ROR] = true; + is_rotation[ROL] = true; + + int num_retries = 0; + code_size = 0; + + int total_iterations = 0; + r8_used = false; + + // Generate random code to achieve minimal required latency for our abstract CPU + // Try to get this latency for all 4 registers + while (((latency[0] < TOTAL_LATENCY) || (latency[1] < TOTAL_LATENCY) || (latency[2] < TOTAL_LATENCY) || (latency[3] < TOTAL_LATENCY)) && (num_retries < 64)) + { + // Fail-safe to guarantee loop termination + ++total_iterations; + if (total_iterations > 256) + break; + + check_data(&data_index, 1, data, sizeof(data)); + + const uint8_t c = ((uint8_t*)data)[data_index++]; + + // MUL = opcodes 0-2 + // ADD = opcode 3 + // SUB = opcode 4 + // ROR/ROL = opcode 5, shift direction is selected randomly + // XOR = opcodes 6-7 + uint8_t opcode = c & ((1 << V4_OPCODE_BITS) - 1); + if (opcode == 5) + { + check_data(&data_index, 1, data, sizeof(data)); + opcode = (data[data_index++] >= 0) ? ROR : ROL; + } + else if (opcode >= 6) + { + opcode = XOR; + } + else + { + opcode = (opcode <= 2) ? MUL : (opcode - 2); + } + + uint8_t dst_index = (c >> V4_OPCODE_BITS) & ((1 << V4_DST_INDEX_BITS) - 1); + uint8_t src_index = (c >> (V4_OPCODE_BITS + V4_DST_INDEX_BITS)) & ((1 << V4_SRC_INDEX_BITS) - 1); + + const int a = dst_index; + int b = src_index; + + // Don't do ADD/SUB/XOR with the same register + if (((opcode == ADD) || (opcode == SUB) || (opcode == XOR)) && (a == b)) + { + // Use register R8 as source instead + b = 8; + src_index = 8; + } + + // Don't do rotation with the same destination twice because it's equal to a single rotation + if (is_rotation[opcode] && rotated[a]) + { + continue; + } + + // Don't do the same instruction (except MUL) with the same source value twice because all other cases can be optimized: + // 2xADD(a, b, C) = ADD(a, b*2, C1+C2), same for SUB and rotations + // 2xXOR(a, b) = NOP + if ((opcode != MUL) && ((inst_data[a] & 0xFFFF00) == (opcode << 8) + ((inst_data[b] & 255) << 16))) + { + continue; + } + + // Find which ALU is available (and when) for this instruction + int next_latency = (latency[a] > latency[b]) ? latency[a] : latency[b]; + int alu_index = -1; + while (next_latency < TOTAL_LATENCY) + { + for (int i = op_ALUs[opcode] - 1; i >= 0; --i) + { + if (!alu_busy[next_latency][i]) + { + // ADD is implemented as two 1-cycle instructions on a real CPU, so do an additional availability check + if ((opcode == ADD) && alu_busy[next_latency + 1][i]) + { + continue; + } + + // Rotation can only start when previous rotation is finished, so do an additional availability check + if (is_rotation[opcode] && (next_latency < rotate_count * op_latency[opcode])) + { + continue; + } + + alu_index = i; + break; + } + } + if (alu_index >= 0) + { + break; + } + ++next_latency; + } + + // Don't generate instructions that leave some register unchanged for more than 7 cycles + if (next_latency > latency[a] + 7) + { + continue; + } + + next_latency += op_latency[opcode]; + + if (next_latency <= TOTAL_LATENCY) + { + if (is_rotation[opcode]) + { + ++rotate_count; + } + + // Mark ALU as busy only for the first cycle when it starts executing the instruction because ALUs are fully pipelined + alu_busy[next_latency - op_latency[opcode]][alu_index] = true; + latency[a] = next_latency; + + // ASIC is supposed to have enough ALUs to run as many independent instructions per cycle as possible, so latency calculation for ASIC is simple + asic_latency[a] = ((asic_latency[a] > asic_latency[b]) ? asic_latency[a] : asic_latency[b]) + asic_op_latency[opcode]; + + rotated[a] = is_rotation[opcode]; + + inst_data[a] = code_size + (opcode << 8) + ((inst_data[b] & 255) << 16); + + code[code_size].opcode = opcode; + code[code_size].dst_index = dst_index; + code[code_size].src_index = src_index; + code[code_size].C = 0; + + if (src_index == 8) + { + r8_used = true; + } + + if (opcode == ADD) + { + // ADD instruction is implemented as two 1-cycle instructions on a real CPU, so mark ALU as busy for the next cycle too + alu_busy[next_latency - op_latency[opcode] + 1][alu_index] = true; + + // ADD instruction requires 4 more random bytes for 32-bit constant "C" in "a = a + b + C" + check_data(&data_index, sizeof(uint32_t), data, sizeof(data)); + uint32_t t; + memcpy(&t, data + data_index, sizeof(uint32_t)); + code[code_size].C = (t); + data_index += sizeof(uint32_t); + } + + ++code_size; + if (code_size >= NUM_INSTRUCTIONS_MIN) + { + break; + } + } + else + { + ++num_retries; + } + } + + // ASIC has more execution resources and can extract as much parallelism from the code as possible + // We need to add a few more MUL and ROR instructions to achieve minimal required latency for ASIC + // Get this latency for at least 1 of the 4 registers + const int prev_code_size = code_size; + while ((code_size < NUM_INSTRUCTIONS_MAX) && (asic_latency[0] < TOTAL_LATENCY) && (asic_latency[1] < TOTAL_LATENCY) && (asic_latency[2] < TOTAL_LATENCY) && (asic_latency[3] < TOTAL_LATENCY)) + { + int min_idx = 0; + int max_idx = 0; + for (int i = 1; i < 4; ++i) + { + if (asic_latency[i] < asic_latency[min_idx]) min_idx = i; + if (asic_latency[i] > asic_latency[max_idx]) max_idx = i; + } + + const uint8_t pattern[3] = { ROR, MUL, MUL }; + const uint8_t opcode = pattern[(code_size - prev_code_size) % 3]; + latency[min_idx] = latency[max_idx] + op_latency[opcode]; + asic_latency[min_idx] = asic_latency[max_idx] + asic_op_latency[opcode]; + + code[code_size].opcode = opcode; + code[code_size].dst_index = min_idx; + code[code_size].src_index = max_idx; + code[code_size].C = 0; + ++code_size; + } + + // There is ~98.15% chance that loop condition is false, so this loop will execute only 1 iteration most of the time + // It never does more than 4 iterations for all block heights < 10,000,000 + } while (!r8_used || (code_size < NUM_INSTRUCTIONS_MIN) || (code_size > NUM_INSTRUCTIONS_MAX)); + + // It's guaranteed that NUM_INSTRUCTIONS_MIN <= code_size <= NUM_INSTRUCTIONS_MAX here + // Add final instruction to stop the interpreter + code[code_size].opcode = RET; + code[code_size].dst_index = 0; + code[code_size].src_index = 0; + code[code_size].C = 0; + + return code_size; +} + +#endif